Exosomes and Nanoengineering: A Match Made for Precision Therapeutics
- PMID: 31531916
- DOI: 10.1002/adma.201904040
Exosomes and Nanoengineering: A Match Made for Precision Therapeutics
Abstract
Targeted exosomal delivery systems for precision nanomedicine attract wide interest across areas of molecular cell biology, pharmaceutical sciences, and nanoengineering. Exosomes are naturally derived 50-150 nm nanovesicles that play important roles in cell-to-cell and/or cell-to-tissue communications and cross-species communication. Exosomes are also a promising class of novel drug delivery vehicles owing to their ability to shield their payload from chemical and enzymatic degradations as well as to evade recognition by and subsequent removal by the immune system. Combined with a new class of affinity ligands known as aptamers or chemical antibodies, molecularly targeted exosomes are poised to become the next generation of smartly engineered nanovesicles for precision medicine. Here, recent advances in targeted exosomal delivery systems engineered by aptamer for future strategies to promote human health using this class of human-derived nanovesicles are summarized.
Keywords: aptamers; exosomes; nanoengineering; precision therapeutics; targeting ligands.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Post isolation modification of exosomes for nanomedicine applications.Nanomedicine (Lond). 2016 Jul;11(13):1745-56. doi: 10.2217/nnm-2016-0102. Epub 2016 Jun 27. Nanomedicine (Lond). 2016. PMID: 27348448 Free PMC article. Review.
-
Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges.Trends Biotechnol. 2017 Jul;35(7):665-676. doi: 10.1016/j.tibtech.2017.03.004. Epub 2017 Mar 29. Trends Biotechnol. 2017. PMID: 28365132 Review.
-
Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics.Lab Chip. 2018 Jun 12;18(12):1690-1703. doi: 10.1039/c8lc00246k. Lab Chip. 2018. PMID: 29780982 Free PMC article. Review.
-
Aptamer-Exosomes for Tumor Theranostics.ACS Sens. 2021 Apr 23;6(4):1418-1429. doi: 10.1021/acssensors.0c02237. Epub 2021 Mar 23. ACS Sens. 2021. PMID: 33755415
-
Aptamer-guided extracellular vesicle theranostics in oncology.Theranostics. 2020 Feb 21;10(9):3849-3866. doi: 10.7150/thno.39706. eCollection 2020. Theranostics. 2020. PMID: 32226524 Free PMC article. Review.
Cited by
-
Engineered extracellular vesicle-delivered TGF-β inhibitor for attenuating osteoarthritis by targeting subchondral bone.J Tissue Eng. 2024 Jul 24;15:20417314241257781. doi: 10.1177/20417314241257781. eCollection 2024 Jan-Dec. J Tissue Eng. 2024. PMID: 39071897 Free PMC article.
-
Extracellular Vesicles as Drug Delivery System for Cancer Therapy.Pharmaceutics. 2024 Aug 1;16(8):1029. doi: 10.3390/pharmaceutics16081029. Pharmaceutics. 2024. PMID: 39204374 Free PMC article. Review.
-
Biomimetic Nanocarriers Guide Extracellular ATP Homeostasis to Remodel Energy Metabolism for Activating Innate and Adaptive Immunity System.Adv Sci (Weinh). 2022 Jun;9(17):e2105376. doi: 10.1002/advs.202105376. Epub 2022 Apr 9. Adv Sci (Weinh). 2022. PMID: 35396800 Free PMC article.
-
Strategies and prospects of effective neural circuits reconstruction after spinal cord injury.Cell Death Dis. 2020 Jun 8;11(6):439. doi: 10.1038/s41419-020-2620-z. Cell Death Dis. 2020. PMID: 32513969 Free PMC article. Review.
-
Extracellular vesicle-based biovectors in chronic wound healing: Biogenesis and delivery approaches.Mol Ther Nucleic Acids. 2023 May 9;32:822-840. doi: 10.1016/j.omtn.2023.05.002. eCollection 2023 Jun 13. Mol Ther Nucleic Acids. 2023. PMID: 37273778 Free PMC article. Review.
References
-
- E. L. Team, Cancer in Australia - Facts and Figures, https://www.cancer.org.au/about-cancer/what-is-cancer/facts-and-figures.... (accessed: May 2019).
-
- a) M. K. S. Tang, P. Y. K. Yue, P. P. Ip, R.-L. Huang, H.-C. Lai, A. N. Y. Cheung, K. Y. Tse, H. Y. S. Ngan, A. S. T. Wong, Nat. Commun. 2018, 9, 2270;
-
- b) G. Chen, A. C. Huang, W. Zhang, G. Zhang, M. Wu, W. Xu, Z. Yu, J. Yang, B. Wang, H. Sun, H. Xia, Q. Man, W. Zhong, L. F. Antelo, B. Wu, X. Xiong, X. Liu, L. Guan, T. Li, S. Liu, R. Yang, Y. Lu, L. Dong, S. McGettigan, R. Somasundaram, R. Radhakrishnan, G. Mills, Y. Lu, J. Kim, Y. H. Chen, H. Dong, Y. Zhao, G. C. Karakousis, T. C. Mitchell, L. M. Schuchter, M. Herlyn, E. J. Wherry, X. Xu, W. Guo, Nature 2018, 560, 382.
-
- B. Escudier, T. Dorval, N. Chaput, F. André, M.-P. Caby, S. Novault, C. Flament, C. Leboulaire, C. Borg, S. Amigorena, C. Boccaccio, C. Bonnerot, O. Dhellin, M. Movassagh, S. Piperno, C. Robert, V. Serra, N. Valente, J.-B. Le Pecq, A. Spatz, O. Lantz, T. Tursz, E. Angevin, L. Zitvogel, J. Transl. Med. 2005, 3, 10.
-
- L. Song, S. Tang, X. Han, Z. Jiang, L. Dong, C. Liu, X. Liang, J. Dong, C. Qiu, Y. Wang, Y. Du, Nat. Commun. 2019, 10, 1639.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources