Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening
- PMID: 27171795
- DOI: 10.1002/cpsc.1
Production of 3-D Airway Organoids From Primary Human Airway Basal Cells and Their Use in High-Throughput Screening
Abstract
The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc.
Keywords: bronchosphere; ciliated cell; goblet cell; high throughput screening; mucociliary.
Copyright © 2016 John Wiley & Sons, Inc.
Similar articles
-
Expansion of Human Airway Basal Stem Cells and Their Differentiation as 3D Tracheospheres.Methods Mol Biol. 2019;1576:43-53. doi: 10.1007/7651_2016_5. Methods Mol Biol. 2019. PMID: 27539459
-
Preparation of Human Primary Colon Tissue-Derived Organoid Using Air Liquid Interface Culture.Curr Protoc Toxicol. 2018 Feb 21;75:22.6.1-22.6.7. doi: 10.1002/cptx.40. Curr Protoc Toxicol. 2018. PMID: 29512123
-
In vitro generation of human pluripotent stem cell derived lung organoids.Elife. 2015 Mar 24;4:e05098. doi: 10.7554/eLife.05098. Elife. 2015. PMID: 25803487 Free PMC article.
-
Cells and Culture Systems Used to Model the Small Airway Epithelium.Lung. 2016 Jun;194(3):419-28. doi: 10.1007/s00408-016-9875-2. Epub 2016 Apr 12. Lung. 2016. PMID: 27071933 Review.
-
Lung organoids: current uses and future promise.Development. 2017 Mar 15;144(6):986-997. doi: 10.1242/dev.140103. Development. 2017. PMID: 28292845 Free PMC article. Review.
Cited by
-
A high-throughput cigarette smoke-treated bronchosphere model for disease-relevant phenotypic compound screening.PLoS One. 2023 Jun 29;18(6):e0287809. doi: 10.1371/journal.pone.0287809. eCollection 2023. PLoS One. 2023. PMID: 37384771 Free PMC article.
-
Opportunities and challenges in phenotypic drug discovery: an industry perspective.Nat Rev Drug Discov. 2017 Aug;16(8):531-543. doi: 10.1038/nrd.2017.111. Epub 2017 Jul 7. Nat Rev Drug Discov. 2017. PMID: 28685762 Review.
-
[Application of Organoids in Lung Cancer Precision Medicine].Zhongguo Fei Ai Za Zhi. 2020 Jul 20;23(7):615-620. doi: 10.3779/j.issn.1009-3419.2020.101.20. Zhongguo Fei Ai Za Zhi. 2020. PMID: 32702796 Free PMC article. Review. Chinese.
-
From Clones to Buds and Branches: The Use of Lung Organoids to Model Branching Morphogenesis Ex Vivo.Front Cell Dev Biol. 2021 Mar 4;9:631579. doi: 10.3389/fcell.2021.631579. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 33748115 Free PMC article. Review.
-
Recent advances in lung organoid development and applications in disease modeling.J Clin Invest. 2023 Nov 15;133(22):e170500. doi: 10.1172/JCI170500. J Clin Invest. 2023. PMID: 37966116 Free PMC article. Review.
References
Literature Cited
-
- Araya, J. , Cambier, S. , Markovics, J.A. , Wolters, P. , Jablons, D. , Hill, A. , Finkbeiner, W. , Jones, K. , Broaddus, V.C. , Sheppard, D. , Barzcak, A. , Xiao, Y. , Erle, D.J. , and Nishimura, S.L. 2007. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients. J. Clin. Invest. 117:3551-3562. doi: 10.1172/JCI32526.
-
- Danahay, H. , Pessotti, A.D. , Coote, J. , Montgomery, B.E. , Xia, D. , Wilson, A. , Yang, H. , Wang, Z. , Bevan, L. , Thomas, C. , Petit, S. , London, A. , LeMotte, P. , Doelemeyer, A. , Velez-Reyes, G.L. , Bernasconi, P. , Fryer, C.J. , Edwards, M. , Capodieci, P. , Chen, A. , Hild, M. , and Jaffe, A.B. 2015. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 10:239-252. doi: 10.1016/j.celrep.2014.12.017.
-
- Debnath, J. , Muthuswamy, S.K. , and Brugge, J.S. 2003. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256-268. doi: 10.1016/S1046-2023(03)00032-X.
-
- Fulcher, M.L. , Gabriel, S. , Burns, K.A. , Yankaskas, J.R. , and Randell, S.H. 2005. Well-differentiated human airway epithelial cell cultures. Methods Mol. Med. 107:183-206. doi: 10.1385/1-59259-861-7:183.
-
- Gray, T.E. , Guzman, K. , Davis, C.W. , Abdullah, L.H. , and Nettesheim, P. 1996. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 14:104-112. doi: 10.1165/ajrcmb.14.1.8534481.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources