Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Feb:157 Suppl 1:S15-S22.
doi: 10.1097/j.pain.0000000000000469.

T-type calcium channels in neuropathic pain

Affiliations
Review

T-type calcium channels in neuropathic pain

Emmanuel Bourinet et al. Pain. 2016 Feb.

Abstract

Pain is a quite frequent complaint accompanying numerous pathologies. Among these pathological cases, numerous neuropathies are retrieved with identified etiologies (chemotherapies, diabetes, surgeries…) and also more diffuse syndromes such as fibromyalgia. More broadly, pain is one of the first consequences of most inherited diseases. Despite its importance for the quality of life, current pain management is limited to drugs that are either old or with a limited efficacy or that possess a bad risk benefit ratio. As no new pharmacological concept has led to new analgesics in the last decades, the discovery of new medications is needed, and to this aim, the identification of new druggable targets in pain transmission is a first step. Therefore, studies of ion channels in pain pathways are extremely active. This is particularly true with ion channels in peripheral sensory neurons in dorsal root ganglia known how to express unique sets of these channels. Moreover, both spinal and supraspinal levels are clearly important in pain modulation. Among these ion channels, we and others revealed the important role of low voltage-gated calcium channels in cellular excitability in different steps of the pain pathways. These channels, by being activated nearby resting membrane potential, have biophysical characteristics suited to facilitate action potential generation and rhythmicity. In this review, we will present the current knowledge on the role of these channels in the perception and modulation of pain.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Adriaensen H, Gybels J, Handwerker HO, Van Hees J. Response properties of thin myelinated (A-delta) fibers in human skin nerves. J Neurophysiol 1983;49:111–22.
    1. Allen SE, Darnell RB, Lipscombe D. The neuronal splicing factor nova controls alternative splicing in N-type and P-type CaV2 calcium channels. Channels (Austin) 2010;4:483–9.
    1. Bao J, Li JJ, Perl ER. Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 1998;18:8740–50.
    1. Barbara G, Alloui A, Nargeot J, Lory P, Eschalier A, Bourinet E, Chemin J. T-type calcium channel inhibition underlies the analgesic effects of the endogenous lipoamino acids. J Neurosci 2009;29:13106–14.
    1. Barriere DA, Mallet C, Blomgren A, Simonsen C, Daulhac L, Libert F, Chapuy E, Etienne M, Hogestatt ED, Zygmunt PM, Eschalier A. Fatty acid amide hydrolase-dependent generation of antinociceptive drug metabolites acting on TRPV1 in the brain. PLoS One 2013;8:e70690.

Publication types

Substances