Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 29;7(323):ra40.
doi: 10.1126/scisignal.2004841.

The DEAH-box RNA helicase DHX15 activates NF-κB and MAPK signaling downstream of MAVS during antiviral responses

Affiliations

The DEAH-box RNA helicase DHX15 activates NF-κB and MAPK signaling downstream of MAVS during antiviral responses

Kenta Mosallanejad et al. Sci Signal. .

Abstract

During infection with an RNA virus, the DExD/H-box RNA helicases RIG-I (retinoic acid-inducible gene I) and MDA5 (melanoma differentiation-associated gene 5) activate the interferon regulatory factor 3 (IRF3), nuclear factor κB (NF-κB), c-Jun amino-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways through an unknown mechanism involving the adaptor protein MAVS (mitochondrial antiviral signaling). We used a Drosophila misexpression screen to identify DEAH-box polypeptide 15 (DHX15) as an activator of the p38 MAPK pathway. Human DHX15 contributed to the activation of the NF-κB, JNK, and p38 MAPK pathways, but not the IRF3 pathway, in response to the synthetic double-stranded RNA analog poly(I:C) (polyinosinic-polycytidylic acid), and DHX15 was required for optimal cytokine production in response to poly(I:C) and infection with RNA virus. DHX15 physically interacted with MAVS and mediated the MAVS-dependent activation of the NF-κB and MAPK pathways. Furthermore, DHX15 was required for poly(I:C)- and RNA virus-dependent, MAVS-mediated apoptosis. Thus, our findings indicate that, in RIG-I-like receptor signaling, DHX15 specifically stimulates the NF-κB and MAPK pathways downstream of MAVS and contributes to MAVS-mediated cytokine production and apoptosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms