Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May;25(5):918-25.
doi: 10.1681/ASN.2013050498. Epub 2013 Dec 19.

Neonatal Fc receptor promotes immune complex-mediated glomerular disease

Affiliations

Neonatal Fc receptor promotes immune complex-mediated glomerular disease

Florina Olaru et al. J Am Soc Nephrol. 2014 May.

Abstract

The neonatal Fc receptor (FcRn) is a major regulator of IgG and albumin homeostasis systemically and in the kidneys. We investigated the role of FcRn in the development of immune complex-mediated glomerular disease in mice. C57Bl/6 mice immunized with the noncollagenous domain of the α3 chain of type IV collagen (α3NC1) developed albuminuria associated with granular capillary loop deposition of exogenous antigen, mouse IgG, C3 and C5b-9, and podocyte injury. High-resolution imaging showed abundant IgG deposition in the expanded glomerular basement membrane, especially in regions corresponding to subepithelial electron dense deposits. FcRn-null and -humanized mice immunized with α3NC1 developed no albuminuria and had lower levels of serum IgG anti-α3NC1 antibodies and reduced glomerular deposition of IgG, antigen, and complement. Our results show that FcRn promotes the formation of subepithelial immune complexes and subsequent glomerular pathology leading to proteinuria, potentially by maintaining higher serum levels of pathogenic IgG antibodies. Therefore, reducing pathogenic IgG levels by pharmacologic inhibition of FcRn may provide a novel approach for the treatment of immune complex-mediated glomerular diseases. As proof of concept, we showed that a peptide inhibiting the interaction between human FcRn and human IgG accelerated the degradation of human IgG anti-α3NC1 autoantibodies injected into FCRN-humanized mice as effectively as genetic ablation of FcRn, thus preventing the glomerular deposition of immune complexes containing human IgG.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
FcRn ablation reduces serum levels of mouse IgG anti-α3NC1 antibodies and prevents the development of albuminuria in α3NC1-immunized mice. (A) The left panel shows circulating mIgG anti-α3NC1 antibodies from C57Bl6 wild-type mice (○), Fcrn−/− mice (□), FCRN-humanized (hFCRN) mice (◇), and the control CFA group (△), which are assayed by indirect ELISA in plates coated with α3NC1 (100 ng/well). Mouse sera are diluted 1:5000. The right panel shows the significance of circulating mIgG anti-α3NC1 antibody differences among groups at week 12, as assessed by one-way ANOVA followed by Bonferroni post tests for pairwise comparisons. (B) The left panel shows that the urinary albumin creatinine ratio (mean±SEM) time course is monitored in C57Bl6 wild-type mice (○), Fcrn−/− mice (□), and hFCRN mice (◇) immunized with α3NC1 (n=5–8 mice in each group, from two separate experiments). Mice in the control group (△) are immunized with adjuvant alone (n=9). The right panel shows the urinary albumin creatinine ratio (mean±SEM) at 14 weeks, when mice are euthanized. The significance of differences among groups is assessed by one-way ANOVA followed by Bonferroni post tests for pairwise comparisons. (C) The left panel shows SDS-PAGE analysis of serum (0.5 µl/lane) and urine samples (2 µl/lane) from CFA-immunized control mice (a) and α3NC1-immunized wild-type mice (b), Fcrn−/− mice (c), and hFCRN mice (d) collected at week 14. The right panel presents a densitometric analysis of the relative levels of albumin in mouse serum samples showing that α3NC1-immunized wild-type mice developed hypoalbuminemia. *P<0.05 by two-tailed t test versus CFA-immunized wild-type mice; **P<0.01; ***P<0.001. ns, not significant; WT, wild type.
Figure 2.
Figure 2.
FcRn deficiency reduces formation of pathogenic subepithelial ICs. (A) Light microscopic evaluation of kidneys from adjuvant-immunized control mice (a) and α3NC1-immunized wild-type mice (b) and Fcrn−/− mice (c) revealed few pathogenic changes and the absence of glomerular inflammation (periodic acid–Schiff staining). (B) Transmission electron microscopy shows normal GBM (arrow) and podocyte foot processes in control mice (a), extensive subepithelial electron dense deposits (arrowhead), thickened GBM, and podocyte foot process effacement in α3NC1-immunized wild-type mice (b), and fewer IC deposits in the Fcrn−/− mice (c). (C) Immunofluorescence analysis of kidneys from adjuvant-immunized control mice (a, e, i, m, and q) and α3NC1-immunized wild-type mice (b, f, j, n, and r), FcRn−/− mice (c, g, k, o, and s), and hFCRN mice (d, h, l, p, and t) evaluate the deposition of mouse IgG (a–d), exogenous α3NC1 antigen stained by mAb RH34 (e–h), mouse C3c (i–l), C5b-9 (m–p), and nephrin staining (q–t) at 14 weeks. Wild-type mice exhibit linear-granular GBM deposition of mouse IgG and granular GBM deposition of exogenous antigen, C3, and C5b-9, which are attenuated in Fcrn−/− mice and hFCRN mice and essentially absent in control mice. Compared with control mice, α3NC1-immunized wild-type mice but not Fcrn−/− or hFCRN mice exhibit a loss of nephrin staining, indicative of podocyte injury. WT, wild type; EM, electron microscopy, PAS, periodic acid–Schiff. Original magnification, ×400 in A; ×2850 in B; ×200 in C.
Figure 3.
Figure 3.
Localization of IgG by high-resolution imaging. The localization of mouse IgG in glomerular capillary walls of wild-type mice immunized with α3NC1 (A, C–E), or intravenously injected with anti-mouse α3NC1 IgG mAb 8D1 (B, F–H) is determined by immunoperoxidase electron microscopy (A and B) and STORM imaging (C–H). In A, the GBM is irregularly thickened, and abundant electron dense peroxidase reaction product is present in discontinuous, subepithelial patterns beneath broadly effaced podocyte foot processes (arrows). In B, the peroxidase reaction product is diffusely present throughout the GBM (arrowhead), but less abundant compared with A. Electron dense deposits are absent, and podocyte foot process architecture appears normal. (C–E) By STORM imaging, anti-agrin (blue) identifies both normal and thickened areas of the GBM, both of which contain dense accumulations of mouse IgG throughout (red). The electron microscopy correlation in E shows GBM staining with respect to the podocytes and endothelial cells. (F–H) IgG mAb 8D1 (red) is present in the GBM, which shows no evidence of thickening. CL, capillary lumen; EM, electron microscopy En, endothelium;Po, podocyte.
Figure 4.
Figure 4.
Pharmacologic blockade of human FcRn accelerates the catabolism of human IgG autoantibodies in FCRN-humanized mice. (A) Structure of a peptide that binds with high affinity to human FcRn, competitively inhibiting its interaction with human IgG (top). The control peptide (bottom) containing D-amino acids does not bind to human FcRn. Pen, Sar, and NMeLeu denote penicillamine, sarcosine, and N-methyl-leucine, respectively. (B) Serum level of human IgG anti-α3NC1 antibodies in FCRN-humanized mice treated with anti-FcRn peptide (▪) or control peptide (●) and in Fcrn−/− (▲) mice sera (n=3 in each group) is analyzed by indirect ELISA in plates coated with α3NC1 (100 ng/well). Mouse sera are diluted 1:500. (C) Kidney deposition of human IgG (a and b) and mouse IgG (c and d) in FCRN-humanized mice treated with control peptide (a and c) or anti-FcRn peptide (b and d) is evaluated by direct immunofluorescence staining. Treatment with anti-FcRn peptide prevents the glomerular deposition of ICs containing human IgG.

Similar articles

Cited by

References

    1. Roopenian DC, Akilesh S: FcRn: The neonatal Fc receptor comes of age. Nat Rev Immunol 7: 715–725, 2007 - PubMed
    1. Akilesh S, Petkova S, Sproule TJ, Shaffer DJ, Christianson GJ, Roopenian D: The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 113: 1328–1333, 2004 - PMC - PubMed
    1. Li N, Zhao M, Hilario-Vargas J, Prisayanh P, Warren S, Diaz LA, Roopenian DC, Liu Z: Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest 115: 3440–3450, 2005 - PMC - PubMed
    1. Sesarman A, Sitaru AG, Olaru F, Zillikens D, Sitaru C: Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita. J Mol Med (Berl) 86: 951–959, 2008 - PubMed
    1. Haymann JP, Levraud JP, Bouet S, Kappes V, Hagège J, Nguyen G, Xu Y, Rondeau E, Sraer JD: Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol 11: 632–639, 2000 - PubMed

Publication types

MeSH terms