Tubulin-dynein system in flagellar and ciliary movement
- PMID: 23060230
- PMCID: PMC3491082
- DOI: 10.2183/pjab.88.397
Tubulin-dynein system in flagellar and ciliary movement
Abstract
Eukaryotic flagella and cilia have attracted the attention of many researchers over the last century, since they are highly arranged organelles and show sophisticated bending movements. Two important cytoskeletal and motor proteins, tubulin and dynein, were first found and described in flagella and cilia. Half a century has passed since the discovery of these two proteins, and much information has been accumulated on their molecular structures and their roles in the mechanism of microtubule sliding, as well as on the architecture, the mechanism of bending movement and the regulation and signal transduction in flagella and cilia. Historical background and the recent advance in this field are described.
Figures
Similar articles
-
How signals of calcium ions initiate the beats of cilia and flagella.Biosystems. 2019 Aug;182:42-51. doi: 10.1016/j.biosystems.2019.103981. Epub 2019 Jun 13. Biosystems. 2019. PMID: 31202860
-
A microtubule-dynein tethering complex regulates the axonemal inner dynein f (I1).Mol Biol Cell. 2018 May 1;29(9):1060-1074. doi: 10.1091/mbc.E17-11-0689. Epub 2018 Apr 9. Mol Biol Cell. 2018. PMID: 29540525 Free PMC article.
-
Thinking about flagellar oscillation.Cell Motil Cytoskeleton. 2009 Aug;66(8):425-36. doi: 10.1002/cm.20313. Cell Motil Cytoskeleton. 2009. PMID: 18828155 Review.
-
The evolution of eukaryotic cilia and flagella as motile and sensory organelles.Adv Exp Med Biol. 2007;607:130-40. doi: 10.1007/978-0-387-74021-8_11. Adv Exp Med Biol. 2007. PMID: 17977465 Free PMC article. Review.
-
Calcium ions tune the beats of cilia and flagella.Biosystems. 2020 Oct;196:104172. doi: 10.1016/j.biosystems.2020.104172. Epub 2020 Jun 10. Biosystems. 2020. PMID: 32534169
Cited by
-
Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution.Cilia. 2015 Apr 30;4:6. doi: 10.1186/s13630-015-0015-z. eCollection 2015. Cilia. 2015. PMID: 25932323 Free PMC article.
-
The Chromosome-Level Genome Assembly and Comprehensive Transcriptomes of the Razor Clam (Sinonovacula constricta).Front Genet. 2020 Jul 7;11:664. doi: 10.3389/fgene.2020.00664. eCollection 2020. Front Genet. 2020. PMID: 32733535 Free PMC article. No abstract available.
-
CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module.Nat Commun. 2020 Nov 2;11(1):5520. doi: 10.1038/s41467-020-19113-0. Nat Commun. 2020. PMID: 33139725 Free PMC article.
-
Ca2+ and cAMP regulations of microtubule sliding in hyperactivated motility of bull spermatozoa.Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(3):99-108. doi: 10.2183/pjab.91.99. Proc Jpn Acad Ser B Phys Biol Sci. 2015. PMID: 25765012 Free PMC article.
-
Sperm dysfunction and ciliopathy.Reprod Med Biol. 2015 Oct 14;15(2):77-94. doi: 10.1007/s12522-015-0225-5. eCollection 2016 Apr. Reprod Med Biol. 2015. PMID: 29259424 Free PMC article. Review.
References
-
- Engelhardt V.A. (1946) Adenosinetriphosphatase properties of myosin. Adv. Enzymol. 6, 147–191
-
- Sawada H., Yokosawa H., Ishii S. (1984) Purification and characterization of two types of trypsin-like enzymes from sperm of the ascidian (Prochordata) Halocynthia roretzi. J. Biol. Chem. 259, 2900–2904 - PubMed
-
- Nelson L. (1955) Adenosinetriphosphatase of Mytilus spermatozoa. I. Effects of pH, calcium and magnesium, and concentration of enzyme and substrate. Biol. Bull. 109, 295–305
-
- Mohri H. (1958) Adenosinetriphosphatases of sea-urchin spermatozoa. J. Fac. Sci., Univ. Tokyo, IV, 8, 307–315