Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
- PMID: 20421486
- PMCID: PMC2889315
- DOI: 10.1073/pnas.1003428107
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
Abstract
Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Q(o) site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
![Fig. 1.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d67/2889315/1fe4aae4c637/pnas.1003428107fig01.gif)
![Fig. 2.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d67/2889315/008890118d11/pnas.1003428107fig02.gif)
![Fig. 3.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d67/2889315/1d072c4f1dad/pnas.1003428107fig03.gif)
![Fig. 4.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d67/2889315/13b3696b86fa/pnas.1003428107fig04.gif)
![Fig. 5.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d67/2889315/3bcedc382fc1/pnas.1003428107fig05.gif)
![Fig. 6.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d67/2889315/9b8a551090de/pnas.1003428107fig06.gif)
Similar articles
-
The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.Cancer Lett. 2015 Jan 28;356(2 Pt A):156-64. doi: 10.1016/j.canlet.2014.04.001. Epub 2014 Apr 13. Cancer Lett. 2015. PMID: 24732809 Free PMC article. Review.
-
Deletion of Pim kinases elevates the cellular levels of reactive oxygen species and sensitizes to K-Ras-induced cell killing.Oncogene. 2015 Jul;34(28):3728-36. doi: 10.1038/onc.2014.306. Epub 2014 Sep 22. Oncogene. 2015. PMID: 25241892 Free PMC article.
-
Drp1 Promotes KRas-Driven Metabolic Changes to Drive Pancreatic Tumor Growth.Cell Rep. 2019 Aug 13;28(7):1845-1859.e5. doi: 10.1016/j.celrep.2019.07.031. Cell Rep. 2019. PMID: 31412251 Free PMC article.
-
KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth.Nat Metab. 2020 Dec;2(12):1373-1381. doi: 10.1038/s42255-020-00315-1. Epub 2020 Nov 23. Nat Metab. 2020. PMID: 33230296
-
Targeting metabolic reprogramming in KRAS-driven cancers.Int J Clin Oncol. 2017 Aug;22(4):651-659. doi: 10.1007/s10147-017-1156-4. Epub 2017 Jun 24. Int J Clin Oncol. 2017. PMID: 28647837 Review.
Cited by
-
Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary thyroid carcinoma cell survival in vitro and in vivo.J Clin Endocrinol Metab. 2013 Apr;98(4):1529-40. doi: 10.1210/jc.2012-3671. Epub 2013 Mar 18. J Clin Endocrinol Metab. 2013. PMID: 23509102 Free PMC article.
-
Prx I suppresses K-ras-driven lung tumorigenesis by opposing redox-sensitive ERK/cyclin D1 pathway.Antioxid Redox Signal. 2013 Aug 10;19(5):482-96. doi: 10.1089/ars.2011.4421. Epub 2013 Jun 13. Antioxid Redox Signal. 2013. PMID: 23186333 Free PMC article.
-
Cancer metabolism: a therapeutic perspective.Nat Rev Clin Oncol. 2017 Jan;14(1):11-31. doi: 10.1038/nrclinonc.2016.60. Epub 2016 May 4. Nat Rev Clin Oncol. 2017. PMID: 27141887 Review.
-
In vivo isotope tracing reveals a requirement for the electron transport chain in glucose and glutamine metabolism by tumors.Sci Adv. 2022 Sep 2;8(35):eabn9550. doi: 10.1126/sciadv.abn9550. Epub 2022 Aug 31. Sci Adv. 2022. PMID: 36044570 Free PMC article.
-
Inflammation-Associated Cytotoxic Agents in Tumorigenesis.Cancers (Basel). 2023 Dec 22;16(1):81. doi: 10.3390/cancers16010081. Cancers (Basel). 2023. PMID: 38201509 Free PMC article. Review.
References
-
- Warburg O, Posener K, Negelein E. Uber den stoffwechsel der carcinomzelle. Biochem Z. 1924;152:309.
-
- Warburg O. On the origin of cancer cells. Science (New York) 1956;123:309–314. - PubMed
-
- Weinhouse S. On respiratory impairment in cancer cells. (Translated from eng) Science (New York) 1956;124:267–269. - PubMed
-
- Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Natl Rev. 2008;8:705–713. - PubMed
-
- Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors: A genetic and biochemical update. Natl Rev. 2005;5:857–866. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- ES013995/ES/NIEHS NIH HHS/United States
- R01 ES013995/ES/NIEHS NIH HHS/United States
- CA125112/CA/NCI NIH HHS/United States
- R01CA123067-04/CA/NCI NIH HHS/United States
- T32 CA009560/CA/NCI NIH HHS/United States
- I01 BX000201/BX/BLRD VA/United States
- P01 HL071643/HL/NHLBI NIH HHS/United States
- R01 CA125112/CA/NCI NIH HHS/United States
- P01HL071643/HL/NHLBI NIH HHS/United States
- P30 CA060553/CA/NCI NIH HHS/United States
- R01 ES015024/ES/NIEHS NIH HHS/United States
- R01 CA123067/CA/NCI NIH HHS/United States
- T32CA009560-22/CA/NCI NIH HHS/United States
- R01 CA152810/CA/NCI NIH HHS/United States
- T32 CA070085/CA/NCI NIH HHS/United States
- ES015024/ES/NIEHS NIH HHS/United States
- T32CA070085-13/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous