Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;28(1):11-9.
doi: 10.4012/dmj.28.11.

Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry

Affiliations
Free article
Review

Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry

Satoshi Imazato. Dent Mater J. 2009 Jan.
Free article

Abstract

Restorative materials in the new era should be "bio-active", and antibacterial effects are highlighted as one of the important properties. In order to achieve resin-based restoratives with antibacterial effects, an antibacterial monomer MDPB has been developed. The primer incorporating MDPB demonstrated cavity-disinfecting effects, and the world's first antibacterial adhesive system employing the MDPB-containing primer was successfully commercialized. MDPB is potentially applicable to various restoratives since immobilization of the antibacterial component by polymerization of MDPB enables no deterioration in mechanical properties of cured resins and exhibition of inhibitory effects against bacterial growth on their surfaces. For glass-ionomer cements used for atraumatic restorative treatment, the approach to provide antibacterial activity has been attempted by addition of chlorhexidine. Incorporation of 1% chlorhexidine diacetate was found to be optimal to give appropriate antibacterial and physical properties, being effective to reduce the bacteria in affected and infected dentin in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms