Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar;149(3):942-9.
doi: 10.1210/en.2007-1713. Epub 2008 Jan 17.

Lipid droplets in lipogenesis and lipolysis

Affiliations
Review

Lipid droplets in lipogenesis and lipolysis

Nicole A Ducharme et al. Endocrinology. 2008 Mar.

Abstract

Organisms store energy for later use during times of nutrient scarcity. Excess energy is stored as triacylglycerol in lipid droplets during lipogenesis. When energy is required, the stored triacylglycerol is hydrolyzed via activation of lipolytic pathways. The coordination of lipid storage and utilization is regulated by the perilipin family of lipid droplet coat proteins [perilipin, adipophilin/adipocyte differentiation-related protein (ADRP), S3-12, tail-interacting protein of 47 kilodaltons (TIP47), and myocardial lipid droplet protein (MLDP)/oxidative tissues-enriched PAT protein (OXPAT)/lipid storage droplet protein 5 (LSDP5)]. Lipid droplets are dynamic and heterogeneous in size, location, and protein content. The proteins that coat lipid droplets change during lipid droplet biogenesis and are dependent upon multiple factors, including tissue-specific expression and metabolic state (basal vs. lipogenic vs. lipolytic). New data suggest that proteins previously implicated in vesicle trafficking, including Rabs, soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), and motor and cytoskeletal proteins, likely orchestrate the movement and fusion of lipid droplets. Thus, rather than inert cytoplasmic inclusions, lipid droplets are now appreciated as dynamic organelles that are critical for management of cellular lipid stores. That much remains to be discovered is suggested by the recent identification of a novel lipase [adipocyte triglyceride lipase (ATGL)] and lipase regulator [Comparative Gene Identification-58 (CGI-58)], which has led to reconsideration of the decades-old model of lipolysis. Future discovery likely will be driven by the exploitation of model organisms and by human genetic studies.

PubMed Disclaimer

Similar articles

Cited by