Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;117(12):3988-4002.
doi: 10.1172/JCI32533.

IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland

Affiliations

IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland

Pasquale Sansone et al. J Clin Invest. 2007 Dec.

Abstract

High serum levels of IL-6 correlate with poor outcome in breast cancer patients. However, no data are available on the relationship between IL-6 and mammary stem/progenitor cells, which may fuel the genesis of breast cancer in vivo. Herein, we address this issue in the MCF-7 breast cancer cell line and in primary human mammospheres (MS), multicellular structures enriched in stem/progenitor cells of the mammary gland. MS from node invasive breast carcinoma tissues expressed IL-6 mRNA at higher levels than did MS from matched non-neoplastic mammary glands. In addition, IL-6 mRNA was detected only in basal-like breast carcinoma tissues, an aggressive breast carcinoma variant showing stem cell features. IL-6 treatment triggered Notch-3-dependent upregulation of the Notch ligand Jagged-1 and promotion of MS and MCF-7-derived spheroid growth. Moreover, IL-6 induced Notch-3-dependent upregulation of the carbonic anhydrase IX gene and promoted a hypoxia-resistant/invasive phenotype in MCF-7 cells and MS. Finally, autocrine IL-6 signaling relied upon Notch-3 activity to sustain the aggressive features of MCF-7-derived hypoxia-selected cells. In conclusion, these data support the hypothesis that IL-6 induces malignant features in Notch-3-expressing stem/progenitor cells from human ductal breast carcinoma and normal mammary gland.

PubMed Disclaimer

Figures

Figure 1
Figure 1. IL-6 mRNA is expressed in MS and in basal-like breast carcinoma tissues.
(A) Phase-contrast microscopy of day 10 primary T-MS generated from samples listed in Table 1. Scale bars: 100 μm. (B) RT-PCR analysis of IL-6, Bmi-1, CK-5, CD44, Oct-4, and β2μ mRNA in T-MS and in tumor tissues from which T-MS had been obtained. (C) Day 10 primary N-MS and T-MS were obtained from the same patient (see Table 1). RT-PCR analysis of IL-6, Bmi-1, CK-5, BCRP-1, and CD133 and quantitation of IL-6, Bmi-1, and CK-5 mRNA, first normalized onto β2μ mRNA and then expressed as a ratio of N-MS to T-MS. *P = 0.031, Mann-Whitney test. NA, not available. (D) Breast carcinoma tissues from patients affected by basal-like or ductal breast carcinoma (see Table 2) were subjected to RT-PCR analysis. Shown is the ratio of IL-6 to β2μ mRNA. #P = 0.001, Mann-Whitney test.
Figure 2
Figure 2. IL-6 sustains MS self renewal and MCF-7 spheroid formation.
(A) Day 7 secondary T-MS, generated from primary T-MS in the presence or absence of the mAb anti–IL-6, which blocks the IL-6 receptor/ligand interaction (1.5 μg/ml). Phase-contrast microscopy analysis and number of MS per well (n = 3). *P = 0.029, **P = 0.042, ANOVA. (B) Phase-contrast microscopy analysis and number of MS per well in day 7 secondary T-MS and N-MS generated from primary MS in the presence or absence of IL-6 (10 ng/ml) and anti–IL-6 (1.5 μg/ml), respectively (n = 3). ΧP = 0.027, ΧΧP = 0.020, #P = 0.048; ##P = 0.035, ANOVA plus post-hoc tests adjusted for multiple comparisons. (C) RT-PCR analysis of IL-6 mRNA in MCF-7 and day 2 MCF-7–derived spheroids and MCF-7(S) generated in the presence or absence of anti–IL-6 (1.5 μg/ml). Also shown are phase-contrast microscopy analysis and MCF-7(S) size distribution. n denotes the number of spheroids counted for each sample. °P = 0.02, Monte Carlo χ2 test. β2μ was assessed as quantitative control for RT-PCR analysis. Scale bars: 100 μm.
Figure 3
Figure 3. IL-6 induces Notch-3 gene upregulation and Notch-3–dependent MCF-7(S) formation.
(A) RT-PCR analysis of Notch-3 mRNA in day 10 primary N-MS in the presence or absence of IL-6 (10 ng/ml) and in T-MS in the presence or absence of anti–IL-6 (1.5 μg/ml) for 24 hours. (B) RT-PCR analysis of Notch-3 mRNA in MCF-7 cells cultured in the presence or absence of IL-6 (10 ng/ml) and in MCF-7(S) in the presence or absence of anti–IL-6 (1.5 μg/ml) or IL-6 (10 ng/ml) for 24 hours. (C) Day 7 MCF-7(S) generated from MCF-7 cells infected with a pSuper­Puro retroviral vector encoding a Notch-3-specific (N3) or control (CT) shRNA (sh) in the presence or absence of IL-6 (10 ng/ml). Phase-contrast microscopy analysis, MCF-7(S) size distribution (n denotes number of spheroids counted per sample), and Western blot analysis of Notch-3 and β-actin protein levels. *P = 0.034, Monte Carlo χ2test. β2μ was assessed as quantitative control for RT-PCR analysis. Scale bars: 100 μm.
Figure 4
Figure 4. Notch-3/Jagged-1 interplay sustains MCF-7(S) formation and MS self-renewal.
(A) Day 10 primary N-MS and T-MS cultured in the presence or absence of IL-6 (10 ng/ml) or anti–IL-6 (1.5 μg/ml) for 24 hours. RT-PCR analysis of Jagged-1 mRNA. (B) RT-PCR analysis of Jagged-1 mRNA and Western blot analysis of phosphorylated ERK and total ERK protein in MCF-7 cells exposed to IL-6 (10 ng/ml) in the presence or absence of the MEK1 inhibitor UO-126 (20 μM) or DMSO for 24 hours, in shNotch-3 and control MCF-7 cells exposed to IL-6 (10 ng/ml for 24 hours), in MCF-7 cells transfected with 1 μg pNICD3 or empty control vector (pEMPTY) for 24 hours, and in MCF-7 cells transfected with pNICD3 in the presence or absence of UO-126 (20 μM) or DMSO. (C) Day 7 MCF-7(S) generated from MCF-7 cells transfected with Jagged-1–specific or scrambled (JAG1 and SCR, respectively) siRNA (1 μg, 72 hours’ pre-exposure). RT-PCR analysis of Jagged-1 mRNA, phase-contrast microscopy analysis, and MCF-7(S) size distribution. #P = 0.001, Monte Carlo χ2 test. (D) Day 7 secondary N-MS generated in the presence of IL-6 (10 ng/ml) and in the presence or absence of anti-N3 mAb, which blocks Notch-3 activity (1.5 μg/ml). Shown are phase-contrast microscopy and N-MS size distribution (n denotes number of spheroids counted per sample). ΧP = 0.039, **P = 0.009, Monte Carlo χ2 plus post-hoc tests adjusted for multiple comparisons. (E) RT-PCR analysis of Jagged-1 and Notch-3 mRNA (ratio to β2μ) in basal-like or ductal carcinoma tissues. ##P = 0.005, ΧΧP = 0.042, Mann-Whitney test. β2μ was assessed as quantitative control for RT-PCR; β-actin was assessed as quantitative control for Western blot. Scale bars: 100 μm.
Figure 5
Figure 5. IL-6/Notch-3 cross-talk promotes the upregulation of CA-IX mRNA and protein.
(A) RT-PCR analysis of CA-IX mRNA in day 10 primary N-MS cultured in the presence or absence of IL-6 (10 ng/ml) for 24 hours. (B) RT-PCR analysis of CA-IX mRNA and Western blot analysis of CA-IX (phosphorylated ERK, total ERK, and β-actin protein levels shown in Figure 4B) in MCF-7 cells exposed to IL-6 (10 ng/ml for 24 hours) in the presence or absence of UO-126 (20 μM) or DMSO, in shNotch-3 and control MCF-7 cells exposed to IL-6 (10 ng/ml for 24 hours), in MCF-7 cells transiently transfected with pNICD3/pEMPTY vector (1 μg), and in MCF-7 cells transfected with pNICD3 and coadministered with UO-126 (20 μM) or DMSO for 24 hours. (C) RT-PCR analysis of IL-6, Notch-3, and CA-IX mRNA in MCF-7 cells exposed to low oxygen (<0.1% O2) or 100 μM DFX and in N-MS and T-MS exposed to 50 μM DFX for 48 hours. (D) RT-PCR analysis of Notch-3 and CA-IX mRNA in MCF-7 cells in the presence or absence of anti–IL-6 (1.5 μg/ml) and in shNotch-3 and control-infected MCF-7 cells exposed to DFX (100 μM for 24 hours), Western blot analysis of Notch-3 and β-actin protein. β2μ was assessed as quantitative control for RT-PCR analysis.
Figure 6
Figure 6. The IL-6/Notch-3/CA-IX axis promotes hypoxia survival.
(A) MCF-7 cells in the presence or absence of DFX (100 μM for 48 hours) and in the presence or absence of anti–IL-6 (1.5 μg/ml for 24 hours), with transient transfection with the CA-IX–specific or scrambled siRNA (1 μg for 72 hours), and shNotch-3 and control MCF-7 cells. Shown are Western blot analysis of Notch-3 and β-actin protein and cell death analysis and RT-PCR analysis of Notch-3 and CA-IX mRNA (n = 3). *P = 0.017, **P = 0.008, ***P = 0.002, ANOVA. (B) Cell death analysis and RT-PCR analysis of Notch-3 and CA-IX mRNA in day 7 secondary T-MS exposed to 50 μM DFX for 48 hours in the presence or absence of anti–IL-6 (1.5 μg/ml for 48 hours) or anti-N3 (1.5 μg/ml for 48 hours) or transfected with CA-IX or scrambled siRNA (1 μg for 72 hours). n = 3 per group. #P = 0.022, ##P = 0.025, ###P = 0.044, ANOVA. (C) RT-PCR analysis and representative IHC analysis of CA-IX protein expression of breast carcinoma tissues from patients affected by basal-like or ductal breast carcinoma (see Table 2). Data are shown as CA-IX/β2μ mRNA ratio. ΧP = 0.002, Mann-Whitney test. β2μ was assessed as quantitative control for RT-PCR analysis. Scale bar: 100 μm.
Figure 7
Figure 7. IL-6/Notch-3 cross-talk enhances the invasive potential of MS and MCF-7 cells by means of CA-IX mRNA upregulation.
(A) Boyden invasion chamber assay in MCF-7 cells, in shNotch-3 and control MCF-7 cells, and in MCF-7 cells transiently transfected with scrambled or CA-IX siRNA (1 μg, 72 hours’ pre-exposure), in the presence or absence of IL-6 (10 ng/ml for 24 hours). n = 5 per group. *P = 0.0001, **P = 0.0001, #P = 0.0001, ANOVA. Inset: RT-PCR analysis of CA-IX mRNA in cells administered scrambled or CA-IX siRNA. (B) Boyden chamber invasion assay of day 7 secondary T-MS in the presence or absence of anti-IL6 (1.5 μg/ml for 24 h) or transfected with IL-6 or CA-IX or scrambled siRNA (1 μg, 72 hours’ pre-exposure). n = 3 per group. *P = 0.003, **P = 0.042, ΧP = 0.0001, ANOVA. RT-PCR analysis of IL-6 and CA-IX mRNA is shown. (C) Boyden chamber invasion assay of day 7 secondary N-MS exposed to IL-6 (10 ng/ml for 24 hours) in the presence or absence of anti-N3 (1.5 μg/ml for 24 hours) or scrambled or CA-IX siRNA (1 μg, 72 hours’ pre-exposure). n = 3 per group. #P = 0.036, ##P = 0.037, ΧP = 0.0001, ANOVA. RT-PCR analysis of IL-6, CA-IX, and β2μ mRNA is shown. (D) Zymographic analysis of MMP-2 activity in shNotch-3 and control MCF-7 cells in the presence or absence of IL-6 (10 ng/ml for 24 hours) and in MCF-7 cells exposed to IL-6 (10 ng/ml for 24 hours) transfected with CA-IX or scrambled siRNA (1 μg, 72 hours’ pre-exposure). n = 3 per group. *P = 0.032, #P = 0.025, ##P = 0.027, ANOVA.
Figure 8
Figure 8. Autocrine IL-6 loop sustains a CA-IX–dependent malignant phenotype in HYPO-7 cells.
(A) HYPO-7, a MCF-7–derived cell population, in the presence of IL-6 or scrambled siRNA (1 μg, 48 hours’ pre-exposure). RT-PCR analysis of IL-6, Notch-3, and CA-IX mRNA; cell death analysis in the presence of DFX (600 μM for 48 hours); and Boyden chamber invasion assay (n = 5) and zymographic analysis (n = 3) of MMP-2 activity (24 hours). *P = 0.042, **P = 0.0001, ***P = 0.015, ANOVA. (B) HYPO-7 cells in the presence of CA-IX or scrambled siRNA (1 μg, 48 hours’ pre-exposure). RT-PCR analysis of IL-6, Notch-3, and CA-IX mRNA; cell death analysis in the presence of DFX (600 μM for 48 hours); and Boyden chamber invasion assay (n = 5) and zymographic analysis (n = 3) of MMP-2 activity (24 hours). #P = 0.034, ##P = 0.0001, ###P = 0.018, ANOVA. (C) HYPO-7 cells, MCF-7(S), and T-MS exposed to anti–IL-6 (1.5 μg/ml) for 24 hours. RT-PCR analysis of IL-6 mRNA level. β2μ was assessed as quantitative control for RT-PCR analysis.
Figure 9
Figure 9. Autocrine IL-6 loop sustains a Notch-3/CA-IX–dependent aggressive phenotype in MCF-7 cells.
(A) RT-PCR analysis of IL-6 mRNA in MCF-7 cells and N-MS exposed to IL-6 (10 ng/ml) for 24 hours. (B) MCF-7 cells exposed to IL-6 (10 ng/ml for 24 hours) and assessed at various times (1 or 2 weeks) after the withdrawal of the cytokine. RT-PCR analysis of IL-6, Notch-3, and CA-IX mRNA and Boyden chamber invasion assay (n = 5) and zymographic analysis (n = 3) of MMP-2 activity (24 hours). *P = 0.010, #P = 0.012, ##P = 0.002, ANOVA with post-hoc test for multiple comparisons. (C) MCF-7 cells exposed to IL-6 (10 ng/ml) for 24 hours and assessed 2 weeks after cytokine withdrawal in the presence or absence of anti–IL-6 (1.5 μg/ml) for 24 hours. RT-PCR analysis of IL-6, Notch-3, and CA-IX mRNA and Boyden chamber invasion assay (24 hours). n = 5 per group. **P = 0.004, ANOVA with post-hoc test for multiple comparisons. (D) RT-PCR analysis of IL-6 and CA-IX mRNA, Western blot analysis of Notch-3 and β-actin protein level, and Boyden chamber invasion assay (24 hours) in shNotch-3 and control MCF-7 cells either untreated or exposed to IL-6 for 24 hours and assessed 2 weeks after cytokine withdrawal (n = 5). ΧP = 0.001, ANOVA with post-hoc test for multiple comparisons. (E) Boyden chamber invasion assay (24 hours) and RT-PCR analysis of CA-IX mRNA in cells as in C and D transfected with CA-IX or scrambled siRNA (1 μg, 48 hours’ pre-exposure). n = 5 per group. ΧΧP = 0.002, ANOVA. β2μ was assessed as quantitative control for RT-PCR analysis.

Comment in

Similar articles

Cited by

References

    1. Hodge D.R., Hurt E.M., Farrar W.L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer. 2005;41:2502–2512. - PubMed
    1. Rose-John S., Scheller J., Elson G., Jones S.A. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors:role in inflammation and cancer. J. Leukoc. Biol. 2006;80:227–236. - PubMed
    1. Knupfer H., Preiss R. Significance of interleukin-6 (IL-6) in breast cancer (review). Breast Cancer Res. Treat. 2007;102:129–135. - PubMed
    1. Bachelot T., et al. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br. J. Cancer. 2003;88:1721–1726. - PMC - PubMed
    1. Zhang G.J., Adachi I. Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res. 1999;19:1427–1432. - PubMed

Publication types

MeSH terms