Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;88(Pt 3):942-950.
doi: 10.1099/vir.0.82483-0.

Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation

Affiliations

Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation

Yeun-Kyung Shin et al. J Gen Virol. 2007 Mar.

Abstract

The phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway has attracted much recent interest due to its central role in modulating diverse downstream signalling pathways associated with cell survival, proliferation, differentiation, morphology and apoptosis. An increasing amount of information has demonstrated that many viruses activate the PI3K/Akt pathway to augment their efficient replication. In this study, the effect of the PI3K/Akt signalling pathway on influenza virus propagation was investigated. It was found that Akt phosphorylation was elevated in the late phase of influenza A/PR/8/34 infection in human lung carcinoma cells (A549). The PI3K-specific inhibitor LY294002 could suppress Akt phosphorylation, suggesting that influenza A virus-induced Akt phosphorylation is PI3K-dependent. UV-irradiated influenza virus failed to induce Akt phosphorylation, indicating that viral attachment and entry were not sufficient to trigger PI3K/Akt pathway activation. Blockage of PI3K/Akt activation by LY294002 and overexpression of the general receptor for phosphoinositides-1 PH domain (Grp1-PH) led to a reduction in virus yield. Moreover, in the presence of LY294002, viral RNA synthesis and viral protein expression were suppressed and, possibly as a consequence of low NP and M1 protein level, viral RNP nuclear export was also suppressed. These data suggest that the PI3K/Akt signalling pathway plays a role in influenza virus propagation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources