Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;22(5):646-55.
doi: 10.1359/jbmr.070121.

Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB

Affiliations
Free article

Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB

Yan Li et al. J Bone Miner Res. 2007 May.
Free article

Erratum in

  • J Bone Miner Res. 2007 Jun;22(6):949

Abstract

Endogenous TNFalpha prevents the attainment of maximum achievable peak bone mass in vivo. In vitro, TNFalpha suppresses BMP-2- and TGFbeta-mediated Smad activation through induction of NF-kappaB. Consistently, pharmacological suppression of NF-kappaB augments osteoblast differentiation and mineralization in vitro.

Introduction: Osteoporosis is a major health threat. Traditional therapeutic strategies have centered on anti-catabolic drugs that block bone resorption. Recently focus has shifted to anabolic agents that actively rebuild lost bone mass. Future strategies may involve elevating peak bone mass to delay osteoporosis development. Recent in vitro studies show that TNFalpha represses osteoblast differentiation and mineralization; however, the mechanisms are poorly understood and the impact of basal TNFalpha concentrations on the acquisition of peak bone mass in vivo is unknown.

Materials and methods: We examined peak BMD, bone volume, and bone turnover makers in mice deficient in TNFalpha or its receptors. We further examined the effect of TNFalpha on Smad-induced signaling by TGFbeta and BMP-2 in vitro using a Smad responsive reporter. The effect of TNFalpha-induced NF-kappaB signaling on Smad signaling and on in vitro osteoblast mineralization was examined using specific NF-kappaB inhibitors and activators, and effects of TNFalpha-induced NF-kappaB signaling on BMP-2-induced Runx2 mRNA were examined using RT-PCR.

Results: Mice null for TNFalpha or its p55 receptor had significantly increased peak bone mass, resulting exclusively from elevated bone formation. In vitro, TNFalpha potently suppressed Smad signaling induced by TGFbeta and BMP-2, downregulated BMP-2-mediated Runx2 expression, and inhibited mineralization of osteoblasts. These effects were mimicked by overexpression of NF-kappaB and prevented by pharmacological NF-kappaB suppression.

Conclusions: Our data suggest that TNFalpha and NF-kappaB antagonists may represent novel anabolic agents for the maximization of peak basal bone mass and/or the amelioration of pathological bone loss.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms