Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 18;281(33):23766-75.
doi: 10.1074/jbc.M605214200. Epub 2006 Jun 19.

Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites

Affiliations
Free article

Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites

F Javier Pérez-Victoria et al. J Biol Chem. .
Free article

Abstract

The antitumor drug miltefosine has been recently approved as the first oral drug active against visceral leishmaniasis. We have previously identified the L. donovani miltefosine transporter (LdMT) as a P-type ATPase involved in phospholipid translocation at the plasma membrane of Leishmania parasites. Here we show that this protein is essential but not sufficient for the phospholipid translocation activity and, thus, for the potency of the drug. Based on recent findings in yeast, we have identified the putative beta subunit of LdMT, named LdRos3, as another protein factor required for the translocation activity. LdRos3 belongs to the CDC50/Lem3 family, proposed as likely beta subunits for P4-ATPases. The phenotype of LdRos3-defective parasites was identical to that of the LdMT-/-, including a defect in the uptake of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amino)-phosphatidylserine, generally considered as not affected in Lem3p-deficient yeast. Both LdMT and LdRos3 normally localized to the plasma membrane but were retained inside the endoplasmic reticulum in the absence of the other protein or when inactivating point mutations were introduced in LdMT. Modulating the expression levels of either protein independently, we show that any one of them could behave as the protein limiting the level of flippase activity. Thus, LdMT and LdRos3 seem to form part of the same translocation machinery that determines flippase activity and miltefosine sensitivity in Leishmania, further supporting the consideration of CDC50/Lem3 proteins as beta subunits required for the normal functioning of P4-ATPases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources