Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 14;281(15):10431-8.
doi: 10.1074/jbc.M509706200. Epub 2006 Jan 17.

Fatty acid amide hydrolase determines anandamide-induced cell death in the liver

Affiliations
Free article

Fatty acid amide hydrolase determines anandamide-induced cell death in the liver

Sören V Siegmund et al. J Biol Chem. .
Free article

Abstract

The endocannabinoid anandamide (AEA) induces cell death in many cell types, but determinants of AEA-induced cell death remain unknown. In this study, we investigated the role of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in AEA-induced cell death in the liver. Primary hepatocytes expressed high levels of FAAH and were completely resistant to AEA-induced cell death, whereas primary hepatic stellate cells (HSCs) expressed low levels of FAAH and were highly sensitive to AEA-induced cell death. Hepatocytes that were pretreated or with the FAAH inhibitor URB597 isolated from FAAH(-/-) mice displayed increased AEA-induced reactive oxygen species (ROS) formation and were susceptible to AEA-mediated death. Conversely, overexpression of FAAH in HSCs prevented AEA-induced death. Since FAAH inhibition conferred only partial AEA sensitivity in hepatocytes, we analyzed additional factors that might regulate AEA-induced death. Hepatocytes contained significantly higher levels of glutathione (GSH) than HSCs. Glutathione depletion by dl-buthionine-(S,R)-sulfoximine rendered hepatocytes susceptible to AEA-mediated ROS production and cell death, whereas GSH ethyl ester prevented ROS production and cell death in HSCs. FAAH inhibition and GSH depletion had additive effects on AEA-mediated hepatocyte cell death resulting in almost 70% death after 24 h at 50 microm AEA and lowering the threshold for cell death to 500 nm. Following bile duct ligation, FAAH(-/-) mice displayed increased hepatocellular injury, suggesting that FAAH protects hepatocytes from AEA-induced cell death in vivo. In conclusion, FAAH and GSH are determinants of AEA-mediated cell death in the liver.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources