Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 May;24(5):816-23.
doi: 10.1161/01.ATV.0000122852.22604.78. Epub 2004 Feb 19.

Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited

Affiliations
Review

Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited

Antonio Ceriello et al. Arterioscler Thromb Vasc Biol. 2004 May.

Abstract

Type 2 diabetes is a worldwide increasing disease resulting from the interaction between a subject's genetic makeup and lifestyle. In genetically predisposed subjects, the combination of excess caloric intake and reduced physical activity induces a state of insulin resistance. When beta cells are no longer able to compensate for insulin resistance by adequately increasing insulin production, impaired glucose tolerance appears, characterized by excessive postprandial hyperglycemia. Impaired glucose tolerance may evolve into overt diabetes. These 3 conditions, ie, insulin resistance, impaired glucose tolerance, and overt diabetes, are associated with an increased risk of cardiovascular disease. Because all these conditions are also accompanied by the presence of an oxidative stress, this article proposes oxidative stress as the pathogenic mechanism linking insulin resistance with dysfunction of both beta cells and endothelium, eventually leading to overt diabetes and cardiovascular disease. This hypothesis, moreover, may also contribute to explaining why treating cardiovascular risk with drugs, such as calcium channel blockers, ACE inhibitors, AT-1 receptor antagonists, and statins, all compounds showing intracellular preventive antioxidant activity, results in the onset of new cases of diabetes possibly being reduced.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms