Increased risk of type 2 diabetes in Alzheimer disease
- PMID: 14747300
- DOI: 10.2337/diabetes.53.2.474
Increased risk of type 2 diabetes in Alzheimer disease
Abstract
Alzheimer disease and type 2 diabetes are characterized by increased prevalence with aging, a genetic predisposition, and comparable pathological features in the islet and brain (amyloid derived from amyloid beta protein in the brain in Alzheimer disease and islet amyloid derived from islet amyloid polypeptide in the pancreas in type 2 diabetes). Evidence is growing to link precursors of amyloid deposition in the brain and pancreas with the pathogenesis of Alzheimer disease and type 2 diabetes, respectively. Given these similarities, we questioned whether there may be a common underlying mechanism predisposing to islet and cerebral amyloid. To address this, we first examined the prevalence of type 2 diabetes in a community-based controlled study, the Mayo Clinic Alzheimer Disease Patient Registry (ADPR), which follows patients with Alzheimer disease versus control subjects without Alzheimer disease. In addition to this clinical study, we performed a pathological study of autopsy cases from this same community to determine whether there is an increased prevalence of islet amyloid in patients with Alzheimer disease and increased prevalence of cerebral amyloid in patients with type 2 diabetes. Patients who were enrolled in the ADPR (Alzheimer disease n = 100, non-Alzheimer disease control subjects n = 138) were classified according to fasting glucose concentration (FPG) as nondiabetic (FPG <110 mg/dl), impaired fasting glucose (IFG, FPG 110-125 mg/dl), and type 2 diabetes (FPG >126 mg/dl). The mean slope of FPG over 10 years in each case was also compared between Alzheimer disease and non-Alzheimer disease control subjects. Pancreas and brain were examined from autopsy specimens obtained from 105 humans (first, 28 cases of Alzheimer disease disease vs. 21 non-Alzheimer disease control subjects and, second, 35 subjects with type 2 diabetes vs. 21 non-type 2 diabetes control subjects) for the presence of islet and brain amyloid. Both type 2 diabetes (35% vs. 18%; P < 0.05) and IFG (46% vs. 24%; P < 0.01) were more prevalent in Alzheimer disease versus non-Alzheimer disease control subjects, so 81% of cases of Alzheimer disease had either type 2 diabetes or IFG. The slope of increase of FPG with age over 10 years was also greater in Alzheimer disease than non-Alzheimer disease control subjects (P < 0.01). Islet amyloid was more frequent (P < 0.05) and extensive (P < 0.05) in patients with Alzheimer disease than in non-Alzheimer disease control subjects. However, diffuse and neuritic plaques were not more common in type 2 diabetes than in control subjects. In cases of type 2 diabetes when they were present, the duration of type 2 diabetes correlated with the density of diffuse (P < 0.001) and neuritic plaques (P < 0.01). In this community cohort from southeast Minnesota, type 2 diabetes and IFG are more common in patients with Alzheimer disease than in control subjects, as is the pathological hallmark of type 2 diabetes, islet amyloid. However, there was no increase in brain plaque formation in cases of type 2 diabetes, although when it was present, it correlated in extent with duration of diabetes. These data support the hypothesis that patients with Alzheimer disease are more vulnerable to type 2 diabetes and the possibility of linkage between the processes responsible for loss of brain cells and beta-cells in these diseases.
Similar articles
-
Pancreas Atrophy and Islet Amyloid Deposition in Patients With Elderly-Onset Type 2 Diabetes.J Clin Endocrinol Metab. 2017 Sep 1;102(9):3162-3171. doi: 10.1210/jc.2016-3735. J Clin Endocrinol Metab. 2017. PMID: 28505316
-
Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes.Diabetes. 2003 Nov;52(11):2759-66. doi: 10.2337/diabetes.52.11.2759. Diabetes. 2003. PMID: 14578294
-
Islet amyloid polypeptide in diabetic and non-diabetic Pima Indians.Diabetologia. 1990 May;33(5):285-9. doi: 10.1007/BF00403322. Diabetologia. 1990. PMID: 2198187
-
Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes.J Clin Endocrinol Metab. 2004 Aug;89(8):3629-43. doi: 10.1210/jc.2004-0405. J Clin Endocrinol Metab. 2004. PMID: 15292279 Review.
-
Genome-wide association studies: is there a genotype for cognitive decline in older persons with type 2 diabetes?Curr Pharm Des. 2011;17(4):347-56. doi: 10.2174/138161211795164239. Curr Pharm Des. 2011. PMID: 21352095 Review.
Cited by
-
Metabolic disorder in Alzheimer's disease.Metab Brain Dis. 2021 Jun;36(5):781-813. doi: 10.1007/s11011-021-00673-z. Epub 2021 Feb 27. Metab Brain Dis. 2021. PMID: 33638805 Review.
-
Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products.Int J Mol Sci. 2023 Nov 2;24(21):15906. doi: 10.3390/ijms242115906. Int J Mol Sci. 2023. PMID: 37958889 Free PMC article. Review.
-
Biomarkers for Early Diagnostic of Mild Cognitive Impairment in Type-2 Diabetes Patients: A Multicentre, Retrospective, Nested Case-Control Study.EBioMedicine. 2016 Feb 6;5:105-13. doi: 10.1016/j.ebiom.2016.02.014. eCollection 2016 Mar. EBioMedicine. 2016. PMID: 27077117 Free PMC article.
-
Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer's Disease and Diabetes.Biomedicines. 2021 May 19;9(5):576. doi: 10.3390/biomedicines9050576. Biomedicines. 2021. PMID: 34069618 Free PMC article. Review.
-
Glycoproteomics Landscape of Asymptomatic and Symptomatic Human Alzheimer's Disease Brain.Mol Cell Proteomics. 2022 Dec;21(12):100433. doi: 10.1016/j.mcpro.2022.100433. Epub 2022 Oct 27. Mol Cell Proteomics. 2022. PMID: 36309312 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical