Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May;421(1):7-16.
doi: 10.1007/BF00374726.

TTX-sensitive Na+ channels and Ca2+ channels of the L- and N-type underlie the inward current in acutely dispersed coeliac-mesenteric ganglia neurons of adult rats

Affiliations

TTX-sensitive Na+ channels and Ca2+ channels of the L- and N-type underlie the inward current in acutely dispersed coeliac-mesenteric ganglia neurons of adult rats

G O Carrier et al. Pflugers Arch. 1992 May.

Abstract

Inward membrane currents of sympathetic neurons acutely dispersed from coeliac-superior mesenteric ganglia (C-SMG) of adult rats were characterized using the whole-cell variant of the patch-clamp technique. Current-clamp studies indicated that C-SMG neurons retained electrical properties similar to intact ganglia. Voltage-clamp studies designed to isolate Na+ currents revealed that tetrodotoxin (TTX, 1 microM) completely inhibited the large transient inward current. Half activation potential (Vh) and slope factor (K) were -26.8 mV and 6.1 mV, respectively. Inactivation parameters for Vh and K were -65 mV and 8.2 mV, respectively. Voltage-clamp studies also revealed a high-voltage-activated sustained inward Ca2+ current which was blocked by the removal of external Ca2+ or the presence of Cd2+ (0.1 mM). The dihydropyridine agonist, (+)202-791 (1 microM), caused a small increase (20%) in the amplitude of the Ca2+ current at more negative potentials and markedly prolonged the tail currents. omega-Conotoxin GIVA (omega, CgTX, 15 microM) caused a 66% inhibition of the high-voltage-activated Ca2+ current amplitude. Norepinephrine (1 microM) caused a 49% reduction in the peak Ca2+ current. This study is the first demonstration that dispersed C-SMG neurons from adult rats retain electrical characteristics similar to intact ganglia. A TTX-sensitive Na+ current as well as a high voltage-activated sustained Ca2+ current underlie the inward current in C-SMG neurons. The macroscopic Ca2+ current is composed of a small dihydropyridine-sensitive (L-type current) and a large omega-CgTx-sensitive (N-type current) component.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed
    1. Neurosci Lett. 1987 Jun 1;77(1):55-60 - PubMed
    1. J Gen Physiol. 1988 Aug;92(2):197-218 - PubMed
    1. Pflugers Arch. 1988 May;411(5):481-90 - PubMed
    1. Ann N Y Acad Sci. 1990;604:398-413 - PubMed

Publication types

MeSH terms

LinkOut - more resources