Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Mar 15;170(6):3029-36.
doi: 10.4049/jimmunol.170.6.3029.

Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1 beta and IL-1 alpha from murine macrophages

Affiliations
Comparative Study

Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1 beta and IL-1 alpha from murine macrophages

David Brough et al. J Immunol. .

Abstract

Interleukin-1 is a primary mediator of immune responses to injury and infection, but the mechanism of its cellular release is unknown. IL-1 exists as two agonist forms (IL-1 alpha and IL-1 beta) present in the cytosol of activated monocytes/macrophages. IL-1 beta is synthesized as an inactive precursor that lacks a signal sequence, and its trafficking does not use the classical endoplasmic reticulum-Golgi route of secretion. Using primary cultured murine peritoneal macrophages, we demonstrate that P2X7 receptor activation causes release of IL-1 beta and IL-1 alpha via a common pathway, dependent upon the release of Ca(2+) from endoplasmic reticulum stores and caspase-1 activity. Increases in intracellular Ca(2+) alone do not promote IL-1 secretion because a concomitant efflux of K(+) through the plasmalemma is required. In addition, we demonstrate the existence of an alternative pathway for the secretion of IL-1 alpha, independent of P2X7 receptor activation, but dependent upon Ca(2+) influx. The identification of these mechanisms provides insight into the mechanism of IL-1 secretion, and may lead to the identification of targets for the therapeutic modulation of IL-1 action in inflammation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources