Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May 6;18(18):2883-91.
doi: 10.1038/sj.onc.1202627.

The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors

Affiliations

The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors

H C Crawford et al. Oncogene. .

Abstract

Matrilysin is a matrix metalloproteinase expressed in the tumor cells of greater than 80% of intestinal adenomas. The majority of these intestinal tumors are associated with the accumulation of beta-catenin, a component of the cadherin adhesion complex and, through its association with the T Cell Factor (Tcf) DNA binding proteins, a regulator in the Wnt signal transduction pathway. In murine intestinal tumors, matrilysin transcripts show striking overlap with the accumulation of beta-catenin protein. The matrilysin promoter is upregulated as much as 12-fold by beta-catenin in colon tumor cell lines in a manner inversely proportional to the endogenous levels of beta-catenin/Tcf complex and is dependent upon a single optimal Tcf-4 recognition site. Coexpression of the E-cadherin cytoplasmic domain blocked this induction and reduced basal promoter activity in every colon cancer cell line tested. Inactivation of the Tcf binding site increased promoter activity and overexpression of the Tcf factor, LEF-1, significantly downregulated matrilysin promoter activity, suggesting that beta-catenin transactivates the matrilysin promoter by virtue of its ability to abrogate Tcf-mediated repression. Because genetic ablation of matrilysin decreases tumor formation in multiple intestinal neoplasia (Min) mice, we propose that regulation of matrilysin production by beta-catenin accumulation is a contributing factor to intestinal tumorigenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources