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Abstract

Background

Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clini-

cal benefit (DCB) in patients with metastatic urothelial cancers, including complete remis-

sions in patients with chemotherapy refractory disease. Although mutation load and PD-L1

immune cell (IC) staining have been associated with response, they lack sufficient sensitivity

and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune

environment and to conduct detailed analyses of mutation load, predicted neoantigens, and

immune cellular infiltration in tumors to enhance our understanding of the biologic underpin-

nings of response and resistance.

Methods and findings

The goals of this study were to (1) evaluate the association of mutation load and predicted

neoantigen load with therapeutic benefit and (2) determine whether intratumoral and periph-

eral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma

treated with atezolizumab. We hypothesized that an elevated mutation load in combination

with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among

peripheral T cells after treatment would be associated with effective tumor control upon
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treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA

sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor

samples as well as TCR-seq of matched, serially collected peripheral blood, collected

before and after treatment with atezolizumab. These parameters were assessed for correla-

tion with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall sur-

vival (OS), both alone and in the context of clinical and intratumoral parameters known to be

predictive of survival in this disease state.

Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL)

(n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the

median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-

rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-

associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22,

Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clon-

ality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clini-

cal outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI

[2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with

different somatic variant calling methodologies, which, in turn, impacted associations with

clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed

neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whit-

ney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respec-

tively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS

in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a

subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of explor-

atory analyses performed, we intend for these results to be hypothesis-generating.

Conclusions

These results demonstrate the complex nature of immune response to checkpoint blockade

and the compelling need for greater interrogation and data integration of both host and

tumor factors. Incorporating these variables in prospective studies will facilitate identification

and treatment of resistant patients.

Author summary

Why was this study done?

ï¿‰A new type of cancer treatment called checkpoint blockade therapy activates the

immune system to fight cancer.

ï¿‰When these therapies work, patients with advanced disease can experience long-lasting

disease control or even cures.

ï¿‰However, most patients will not experience these benefits, and it is crucial to identify

these patients in advance so that we can develop better treatments for them.

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002309 May 26, 2017 2 / 24

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests. ERM is a member of

the Editorial Board of PLOS Medicine. SAF declared

stock ownership in Kite Pharmaceuticals. MDH

declared research grants from BMS and Genentech

and paid consultancy from Genentech, Merck,

BMS, AstraZeneca, Janssen and Neon. EY declared

employment at Adaptive Biotechnologies. MV

declared employment by Adaptive Biotechnologies

Corp. with salary and stock options. SB declared

ownership of stocks or shares and paid

employment at Adaptive Biotechnologies. HR

declared employment, equity ownership, patents,

and royalties with Adaptive Biotechnologies. JER

declared consultancy for Roche/Genetech, Bristol

Myers Squibb, Oncogenex, Eli Lilly, AstraZeneca,

Merck, Sanofi and Boehringer-Ingleheim, and

stock in Merck and Illumina. DFB declared

consultancy for Bristol Myers Squibb, Genentech-

Roche, Pfizer, Merck, Novartis and Eli-Lilly;

research support from Bristol Myers Squibb,

Genentech-Roche, Merck, Novartis and Amgen;

and travel support from Eli-Lilly, Genentech and

Merck. AS declared research grants from BMS and

paid consultancy for BMS and Driver. JER declared

research grants from Neon and paid consultancy

for AstraZeneca.

Abbreviations: AUC, area under the curve; BCG,

Bacillus Calmetteï¿‰Gueï¿‰rin; BQSR, Base Quality

Score Recalibration; DCB, durable clinical benefit;

DCB-OS, overall survival greater than 12 months;

DDR, DNA damage response; FDR, false discovery

rate; FFPE, formalin-fixed paraffin embedded;

GSEA, Gene Set Enrichment Analysis; HR, hazard

ratio; IC, immune cell; OS, overall survival; PBMC,

peripheral blood mononuclear cell; PD-L1,

programmed death-ligand 1; PFS, progression-free

survival; RNA-seq, RNA sequencing; TCR, T cell

receptor; TCR-seq, T cell receptor sequencing; TIL,

tumor-infiltrating T lymphocytes; VAF, variant allele

frequency; WES, whole exome sequencing.

https://doi.org/10.1371/journal.pmed.1002309


What did the researchers do and find?

ï¿‰In this study, we studied 29 patients with advanced bladder cancers treated with a

checkpoint blockade drug called atezolizumab.

ï¿‰We examined features of the tumor and the immune system, as well as clinical features.

ï¿‰We found that these features were related to each other, and to the success of therapy, in

various ways.

ï¿‰Patients who had a diverse repertoire of T cells in their blood tended to survive longer.

Patients who had poor clinical prognostic factors, like having cancer that had traveled to

their liver, tended to have worse survival.

What did the research findings mean?

ï¿‰This study demonstrates that we need to take the tumor, immune system, and clinical

picture into account if we are to improve the efficacy of immune-mobilizing therapies

in cancer.

ï¿‰Some patients may be too sick to benefit from checkpoint blockade therapy, despite, in

some cases, having biomarkers in their tumors that would predict benefit.

Introduction

Atezolizumab has demonstrated responses in 15%ï¿‰25%of patients with advanced urothelial

carcinoma and improved survival compared to historical expectations [1,2]. Similar to predic-

tive factor analyses in melanoma, colon cancer, and non-small cell lung cancer studies with

other checkpoint blockade agents, Rosenberg and colleagues reported a statistically significant

association between mutation load and response to atezolizumab in urothelial cancer patients

[2]. However, mutation load in the atezolizumab study was predicted based on an estimate

using a targeted panel and not with whole exome sequencing (WES). Similar to findings from

prior studies, the association between this predicted mutation load and outcomes in patients

with urothelial cancer was not dichotomous; there were tumors from patients with elevated

mutation load that did not respond to therapy, and vice versa. Additionally, positive pro-

grammed death-ligand 1 (PD-L1) staining of infiltrating immune cells by immunohistochem-

istry was associated with, but poorly predicted, response. A statistical model suggested that

both PD-L1 staining and mutation load impacted the likelihood of response. However, the

authors did not recommend their clinical use.

Collectively, studies to date imply that a combination of immune parameters are necessary

to gain further precision in determining the likelihood of benefit from these immunotherapies

and that a single biologic marker will be insufficient. There have been few attempts to integrate

molecular and immunologic data from patients treated with checkpoint blockade and their

tumors. Consequently, we performed whole exome, RNA, and T cell receptor (TCR) sequenc-

ing (TCR-seq) of tumor samples from patients treated with atezolizumab, as well as TCR-seq

of matched, serially collected peripheral blood.

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab
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Methods

Ethics statement

All research involving human participants was approved by the authors’ Institutional Review

Board (MSKCC IRB), and all clinical investigation was conducted according to the principles

expressed in the Declaration of Helsinki. Written informed consent was obtained from the

participants.

Analysis plan

The analyses that were and were not included in the prespecified analysis plan are detailed in

S2 Text.

Patients and clinical characteristics

All patients had locally advanced or metastatic urothelial carcinoma and were treated at

Memorial Sloan Kettering Cancer Center (n = 29) on protocol NCT02108652 [2]. All patients

initiated therapy in 2014, were treated with atezolizumab 1,200 mg IV every 3 weeks, and pro-

vided written consent according to Institutional Review Board-approved protocols permitting

tissue and blood collection, sequencing, and correlative studies. Patient tumor samples were

assessed prospectively and centrally (by HistoGeneX, Brussels, Belgium) for PD-L1 expression

by immunohistochemistry with the SP142 assay (Ventana, AZ, USA) [1]. The PD-L1 tumor-

infiltrating immune cell (IC) status was defined by the percentage of PD-L1ï¿‰positiveICs in

the tumor microenvironment: IC0 (<1%), IC1 (�1% but<5%), and IC2/3 (�5%), as defined

in the original study. Six patients had multiple samples evaluated for PD-L1 IC status; for 4 of

these patients, the sample used for PD-L1 IC status in this analysis was the same as the sample

that was whole exome sequenced. For the remaining 2, the PD-L1 status of 1 patient’s tumor

(1994) used a separate primary tumor sample that also agreed in status with a metastatic sam-

ple; the other patient’s tumor (6229) used a metastatic sample site that agreed in status with

another metastatic sample site. Smoking status was evaluated using previously completed self-

reported smoking questionnaires or review of medical records. One patient was excluded

because the patient did not consent to correlative studies beyond PD-L1 testing that was per-

formed as part of the clinical trial.

Tumor and blood samples

All tumor tissue used for sequencing was obtained prior to dosing with atezolizumab. Tumor

samples used for whole exome sequencing were all formalin-fixed paraffin-embedded (FFPE).

The presence of tumor tissue in the sequenced samples was confirmed by examination of a

representative hematoxylin and eosin-stained slide by a genitourinary pathologist (H.A.).

Peripheral blood mononuclear cells (PBMCs) were isolated and stored as previously described

[3]. PBMCs were collected pretreatment and during treatment.

Clinical efficacy analysis

Tumor responses to atezolizumab were evaluated by CT scan every 9 weeks for the first 12

months following day 1 of cycle 1. After 12 months, tumor assessments were performed every

12 weeks. The response evaluation criteria in solid tumors (RECIST) version 1.1 was used to

define objective clinical responses by the institutional radiologist.

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab
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DNA extraction and high-throughput TCRβ sequencing

Tumor samples from patients 0522 and 6800 were excluded from tumor TCR analyses after

failing quality control. Patients 0979, 7592, and 8214 did not have available tumors for TCRβ
sequencing and were therefore excluded from tumor TCR analyses as well. Genomic DNA

was purified from total PBMCs and tumor samples using the Qiagen DNeasy Blood extraction

kit. The TCRβ CDR3 regions were amplified and sequenced using immunoSEQ1 (Adaptive

Biotechnologies, Seattle, WA), as previously described [4]. In brief, bias-controlled V and J

gene primers were used to amplify rearranged V(D)J segments for high-throughput sequenc-

ing at approximately 20X coverage. After correcting sequencing errors via a clustering algo-

rithm, CDR3 segments were annotated according to the International ImMunoGeneTics

Collaboration [5] to identify the V, D, and J genes that contributed to each rearrangement. A

mixture of synthetic TCR analogs in each PCR was used to estimate the absolute template

abundance (i.e., the number of cells bearing each unique TCR sequence) from sequencing

data, as previously described [6]. The estimated tumor-infiltrating T lymphocytes (TIL) con-

tent was calculated as previously described [6ï¿‰8].To determine TIL content in FFPE samples

as a T cell fraction, we amplified several housekeeping genes and quantitated their template

counts to determine the amount of DNA usable for TCRβ sequencing. ImmunoSEQ then

amplifies and sequences the molecules with rearranged TCRβ chains. Because the immuno-

SEQ assay aligns sequences to the IMGT database, sequences are annotated as complete VDJ

rearrangements or nonproductive rearrangements (a stop codon or out of frame CDR3 region

was generated during VDJ recombination in 1 of the alleles); all downstream analysis in this

work proceeded with complete, productive sequences. To estimate the number of starting

templates that were in the sample, the number of sequence reads for each TCRβ sequence is

measured. Synthetic control templates were also spiked into each sample, thereby enabling

quantitation of input TCRβ templates from the read counts. For each sample, Shannon en-

tropy was also calculated on the clonal abundance of all productive TCR sequences in the data

set. Shannon entropy was normalized to the range by dividing Shannon entropy by the loga-

rithm of the number of unique productive TCR sequences in the data set. This normalized

entropy value was then inverted to produce the clonality metric. Those T cell clones whose

frequencies differed between samples from a given subject taken at different time points, or

between cell populations (e.g., between total PBMCs and tumor), were computationally identi-

fied as previously described [9]. The input data consisted of the absolute abundance for each

TCR clone in each sample. Fisher’s exact test was used to compute a p-value for each clone

across the 2 samples against the null hypothesis that the population abundance of the clone is

identical in the 2 samples. We corrected for multiple testing to control the false discovery rate

(FDR) using the Benjamini-Hochberg procedure and employed a significance threshold of

0.01 on adjusted p-values.

Whole exome sequencing

Twenty-six FFPE-derived tumor and frozen PBMC-derived normal paired samples were

sequenced by exome hybrid capture, using the IDT xGen Whole Exome Panel (https://www.

idtdna.com/pages/products/nextgen/target-capture/xgen-lockdown-panels/xgen-exome-

panel) and standard protocols. Briefly, each sample was used to create a barcoded Illumina

library, tumor samples were pooled at optimal multiplex to create an equimolar pool into the

hybrid capture reaction, which was performed according to the manufacturer’s suggested pro-

tocol. Similarly, normal samples were pooled and introduced to the hybrid capture reaction.

Following the recovery of captured library fragments, PCR amplification was performed, the

resulting pools of fragments were quantitated using qPCR (Kapa Bio) and sequenced in

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab
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separate lanes by paired-end 150 bp reads, using the Illumina HiSeq 4000. Whole exome

sequencing results for 1 sample (for patient 4072) were excluded after failing to meet coverage

requirements.

Somatic variant calling

DNA sequencing data for the tumor and normal samples were aligned to the GRCh37 refer-

ence using bwa-mem (v. 0.7.10) with default settings. The resulting BAMs were processed

through Picard MarkDuplicates and the GATK (v. 3.5ï¿‰0)pipeline, including Base Quality

Score Recalibration and Indel Realignment. Single nucleotide variants (SNVs) were called

from Mutect (v. 1.1.6) and Strelka (v. 1.0.14) with default settings. Variants from either call

were included and the variants calls were further filtered to those with depth (in normal and

tumor samples)�7 reads, >10% tumor variant allele frequency (VAF), and�3% normal VAF

[10]. Mutations per megabase was computed by normalizing the number of mutations by the

number of exonic loci with�7 reads in normal and tumor samples, calculated using Pageant

(https://github.com/hammerlab/pageant).

Variants were annotated as missense variants by Varcode (v. 0.5.10, https://github.com/

hammerlab/varcode) and PyEnsembl (v. 1.0.3, https://github.com/hammerlab/pyensembl)

using Ensembl Release 75 and annotated as deleterious using PolyPhen (v. 2.2.2). DNA dam-

age response (DDR) genes were gathered from [11,12].

Mutational signatures were inferred from the somatic mutation calls using deconstructSigs

(v 1.6.0).

Human leukocyte antigen typing

Human leukocyte antigen (HLA) types for each patient were computed from the normal

sequencing data using OptiType (v. 1.0.0).

RNA sequencing

RNA was extracted from 26 FFPE tumor samples and evaluated for quality and quantity using the

Agilent RNA pico chip. Each sample was prepared for sequencing by constructing an Illumina

Tru-Seq Stranded RNA kit, according to the manufacturer’s protocol. The resulting libraries were

amplified by PCR, quantitated, pooled, and processed through a hybrid capture intermediate

using the IDT xGen Exome reagent (as above). The captured fragments were quantitated, diluted,

and were sequenced using 2 x 150 bp paired-end reads on the Illumina HiSeq 4000.

The RNA sequencing (RNA-seq) data were aligned to the GRCh37 reference in Ensembl

Release 75 using STAR (v. 2.4.1d), and transcript quantification was performed using kallisto

(v. 0.42.3). The STAR alignment was only used for identifying variant-supporting reads in the

RNA. For gene-level analysis, the transcript quantifications were aggregated to the gene level

using tximport (http://f1000research.com/articles/4-1521/v1).

Expressed mutations and neoantigens were computed using Isovar (v. 0.0.6, https://github.

com/hammerlab/isovar), based on the RNA reads overlapping each mutation. Sleuth (v. 0.28.1)

was used for differential expression analysis, and Gene Set Enrichment Analysis (GSEA) was

used for pathway enrichment analysis. ESTIMATE was used to quantify immune and stromal

scores from RNA-seq data.

Neoantigen calling

Neoantigens were computed from all nonsynonymous mutations using Topiary (v. 0.1.0, https://

github.com/hammerlab/topiary) and NetMHCCons (v. 1.1) with HLA alleles calculated by

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab
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OptiType. As with expressed mutations, expressed neoantigens were those supported in the

RNA with at least 3 uniquely-mapped reads matching the cDNA sequence.

Statistical analysis

All statistical analysis was performed in Python and R (v. 3.3.1). Cohorts (v. 0.4.0, https://

github.com/hammerlab/cohorts) and Biokepi (https://github.com/hammerlab/biokepi) were

used to orchestrate the analysis. The Mann Whitney and Fisher’s Exact test were performed

using the Python scientific computing library, SciPy (v. 0.18.1). Kaplan-Meier curves were

computed with Lifelines (v. 0.9.1.0). Survival and logistic regression models were estimated

using PyStan (v. 2.12.0.0), and the Stan statistical computing software (v. 2.12.0). Survival anal-

yses utilized a proportional hazards piecewise exponential model with a random walk baseline

hazard. The analysis for presence of a time-varying covariate effect was performed in R using

survival (v. 2.39.5) to look for the association of scaled Schoenfeld residuals with log(time),

whereas the estimation of the time-varying covariate effect was performed using Stan. This

analysis estimated the covariate effect at each timepoint with a random-walk prior. In some

cases, alternative specifications of models written in Stan were interrogated as sensitivity analy-

ses; see the project’s GitHub repository (https://github.com/hammerlab/multi-omic-

urothelial-anti-pdl1) and S3 Text for details.

All analysis code is available at https://github.com/hammerlab/multi-omic-urothelial-anti-

pdl1 for open access by readers.

Mutation calls, TCR-seq, and RNA-seq data are available at http://doi.org/10.5281/zenodo.

546110. Additional data are available at https://github.com/hammerlab/multi-omic-urothelial-

anti-pdl1.

Results

Patient characteristics

Twenty-nine patients with metastatic urothelial cancer from a single institution, treated with

atezolizumab, as part of a single-arm phase II study (IMvigor 210, NCT 02108652), were

included in the analyses. The patients displayed characteristics typical of the metastatic urothe-

lial cancer population studied in IMvigor 210: 25 of 29 were males with urothelial cancers of

bladder origin, and 18 of 29 had a reported prior smoking history (Table 1). Patients had an

Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 and had 0 to 3

prior regimens of chemotherapy. Of this group, 25 patients had sufficient tumor tissue for

WES, 26 for RNA-seq, and 24 for TCR-seq. Twenty-nine had a pretreatment peripheral blood

sample on which TCR-seq could be performed; 24 had 1 pretreatment and at least 1 posttreat-

ment peripheral blood collection.

Intratumoral and peripheral TCR features associate with durable clinical

benefit

The importance of T cells to the anti-tumor response has long been known [15]; the relevance

of intratumoral and peripheral TCR clonality to the anti-tumor response is an area of active

study. A single previous study of melanoma patients treated with anti-PD-1 therapy demon-

strated that patients whose tumors featured both high levels of tumor-infiltrating T lympho-

cytes (TIL) along with high TIL clonality were more likely to experience radiographic response

to therapy [8]. A separate study examined the peripheral TCR repertoire in anti-cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4)ï¿‰treatedpatients with prostate cancer or melanoma

and found that clonotype stability was associated with response [16]. To our knowledge, no

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002309 May 26, 2017 7 / 24

https://github.com/hammerlab/cohorts
https://github.com/hammerlab/cohorts
https://github.com/hammerlab/biokepi
https://github.com/hammerlab/multi-omic-urothelial-anti-pdl1
https://github.com/hammerlab/multi-omic-urothelial-anti-pdl1
https://github.com/hammerlab/multi-omic-urothelial-anti-pdl1
https://github.com/hammerlab/multi-omic-urothelial-anti-pdl1
http://doi.org/10.5281/zenodo.546110
http://doi.org/10.5281/zenodo.546110
https://github.com/hammerlab/multi-omic-urothelial-anti-pdl1
https://github.com/hammerlab/multi-omic-urothelial-anti-pdl1
https://doi.org/10.1371/journal.pmed.1002309


prior study has reported both intratumoral and peripheral TCR clonality in a single population

treated with checkpoint blockade therapy.

We performed TCR-seq of tumors and PBMCs at serial time points in our cohort. Due to

limitations in sample availability (Methods), this analysis included tumors from 24 patients

and peripheral blood from 29 patients, including pretreatment samples in all patients, and

between 1 and 8 total time points. A median of 141,255 (range 43,052ï¿‰335,089)T cells were

analyzed per peripheral blood sample, including 82,636 (range 24,095ï¿‰207,860)unique TCRs,

Table 1. Baseline characteristics.

Variable Durable Clinical

Beneï¿‰t

(n = 9)

No Durable

Beneï¿‰t

(n = 20)

Median age (range) 66 (57ï¿‰74) 72 (46ï¿‰81)

Male sex 9 (100%) 16 (80%)

Site of primary tumor

Bladder 7 (78%) 19 (95%)

Upper tract 2 (12%) 1 (5%)

ECOG performance status

0 0 (0%) 1 (5%)

1 9 (100%) 19 (95%)

History of tobacco use

No 4 (44%) 7 (35%)

Yes 5 (56%) 13 (65%)

Hemoglobin concentration <10 gm/dL 1 (11%) 3 (15%)

Albumin�lower limit of normal 2 (22%) 5 (25%)

Metastatic sites at baseline

Visceral^ 3 (33%) 16 (80%)

Liver 2 (22%) 9 (45%)

Lymph node only 6 (67%) 4 (20%)

Number of previous systemic regimens in the metastatic setting

0 5 (56%) 3 (20%)

1 2 (22%) 15 (70%)

2 1 (11%) 1 (5%)

�3 1 (11%) 1 (5%)

Previous neoadjuvant or adjuvant chemotherapy, with ï¿‰rst

progression within�12 months

3 (33%) 2 (10%)

Time since previous chemotherapy�3 months 2 (29%) 5 (26%)

Prognostic risk group for previously treated patients*

Low 3 (42%) 7 (37%)

Intermediate 2 (29%) 5 (26%)

High 2 (29%) 7 (37%)

Prognostic risk group for previously untreated patientsï¿‰

Low 0 (0%) 0 (0%)

Intermediate 2 (100%) 0 (0%)

High 0 (0%) 1 (100%)

Intravesical BCG administered (%) 2 (22%) 10 (50%)

^Visceral metastasis deï¿‰nedas liver, lung, bone, or any non-lymph node or soft tissue metastasis.

*Based on [13].

ï¿‰Basedon [14].

Abbreviations: BCG, Bacillus Calmetteï¿‰Gueï¿‰rin; ECOG, Eastern Cooperative Oncology Group.

https://doi.org/10.1371/journal.pmed.1002309.t001
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with a median clonality of 0.080 (range 0.014ï¿‰0.37)and a median T cell proportion of 0.31

(range 0.082ï¿‰0.64).In the tumors, the corresponding values included 1,402 (range 63ï¿‰

133,167) T cells, 1,086 (range 67ï¿‰56,273)unique TCRs, clonality of 0.096 (range 0.033ï¿‰0.34),

and T cell proportion of 0.097 (range 0.0098ï¿‰0.33).

In our patient group, we first asked whether there was an association between outcome and

either TIL clonality or TIL proportion, or with clonality in the peripheral blood. Consistent

with the data from Tumeh and colleagues [8], tumors from patients who experienced a durable

clinical benefit (DCB) exhibited a higher TIL proportion than those patients who experienced

progressive disease, with a median of 0.21 (range 0.049ï¿‰0.33)in tumors from patients who had

progression-free survival (PFS) greater than 6 months versus 0.069 (range 0.0098ï¿‰0.24)in

tumors from patients who did not (n = 24, Mann-Whitney p = 0.047, Fig 1A). The consistency

of results is notable given that Tumeh and colleagues used a different methodology (IHC) to

assess TIL proportion than was used in our study. However, TIL proportion was not associated

with continuous PFS (n = 24, log-rank p = 0.32) or OS (n = 24, log-rank p = 0.26) when split by

median proportion. TIL clonality alone was not significantly associated with DCB (n = 24,

Mann-Whitney p = 0.10, Fig 1A), continuous PFS (split by median clonality, n = 24, log-rank

p = 0.51), or continuous OS (split by median clonality, n = 24, log-rank p = 0.47). Tumors with

less than the median TIL proportion or TIL clonality, considered jointly as 1 feature, were less

likely to display DCB (Fig 1B, 25% of patients with DCB versus 81% of patients without DCB,

n = 24, Fisher’s Exact p = 0.021). Considering TIL proportion and TIL clonality separately,

when using median as a threshold, did not result in a significant difference in terms of DCB in

either case (S1A Fig). It remains unclear whether TIL clonality adds to TIL proportion in its

association with DCB in this study (TIL proportion and TIL clonality versus TIL proportion

alone, n = 24, log-likelihood p = 0.100).

We next examined pretreatment peripheral blood clonality and its relationship to DCB.

Because a diverse TCR repertoire in circulation may increase the likelihood that a tumor-spe-

cific T cell population is present, we hypothesized that TCR clonality would be inversely asso-

ciated with response. We found that low pretreatment peripheral TCR clonality was associated

with improved PFS (split by median clonality, n = 29, log-rank p = 0.048), overall survival

(OS, split by median clonality, n = 29, log-rank p = 0.011), and OS greater than 12 months

(DCB-OS, n = 29, Mann-Whitney p = 0.0061; Fig 1C, 1D and 1E), although not with DCB (Fig

1F, n = 29, Mann-Whitney p = 0.25).

Finally, we explored the relationship between intratumoral and peripheral TCR clonality.

Individual T cell clones present in tumors can be tracked in the peripheral blood during treat-

ment (examples in S1B Fig). Expansion of tumor-associated TCRs occurred in the peripheral

blood in all patients (Fig 1G). However, a more pronounced expansion of intratumoral TCR

clones was observed in DCB patients at 3 weeks after initiation of treatment (second dose of

therapy) (n = 22, Mann-Whitney p = 0.022, Fig 1H) that was not significant at 6 weeks after

therapy initiation (n = 20, Mann-Whitney p = 0.17, S1C Fig). Interestingly, all patients with

low pretreatment peripheral TCR clonality and high TIL clonality survived greater than 12

months (DCB-OS, S1D Fig).

Association of tumor genetic features with PFS or OS

To further examine intratumoral factors associated with therapeutic efficacy, we performed

WES on 25 FFPE archived tumor samples. Mean target coverage was 129 (range 44ï¿‰194)in

tumors and 73 (range 59ï¿‰91)in normal tissue. SNVs were identified and annotated as silent,

missense, or nonsense mutations (Fig 2A). There was no significant association between

median missense mutation load and DCB (median mutations per megabase 3.24 [range 0.038ï¿‰
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Fig 1. T cell receptor (TCR) clonality and treatment response. (A) Tumor-infiltrating T lymphocytes (TIL)

proportion alone was associated with durable clinical benefit (DCB), with a median of 0.21 (range 0.049ï¿‰0.33)

in tumors from patients who had DCB versus 0.069 (range 0.0098ï¿‰0.24) in tumors from patients who did not

(n = 24, Mann-Whitney p = 0.047). TIL clonality alone was not significantly associated with DCB, with a

median of 0.12 (range 0.047ï¿‰0.34) in tumors from patients with DCB and a median of 0.092 (range 0.033ï¿‰
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11.46] in patients with DCB compared to 0.45 [range 0.019ï¿‰9.90]in those without DCB, n = 25,

Mann-Whitney p = 0.22, Fig 2B). There was also no significant association between missense

mutation load and DCB-OS (n = 25, Mann-Whitney p = 0.37, S2A Fig). In a survival analysis

for time to disease progression or mortality, the estimated hazard ratio associated with increase

in missense SNV count per megabase was 0.92 (95% CI [0.78, 1.09]). These results are not sur-

prising given that the present sample size (n = 25) is underpowered to detect an effect of magni-

tude similar to that observed by Rosenberg and colleagues [2] (power = 0.2, assuming median of

12.4 versus 6.4 mutations per megabase among patients with DCB versus non-DCB response).

When filtering to expressed mutations, we found a median of 0.79 (range 0.00ï¿‰3.36)

expressed mutations per megabase for patients with DCB and a median of 0.16 (range 0.00ï¿‰

3.34) expressed mutations per megabase for patients without DCB (n = 25, Mann-Whitney

p = 0.26, S2B Fig). Consistent with the known importance of specific variant calling pipelines

to output [17,18], we found that different filtering techniques impacted the association with

DCB (S1 Table). Missense mutation load, when counting only mutations that were removed

after postprocessing (via Base Quality Score Recalibration [BQSR] and depth/VAF filtering),

was predictive of response (n = 25, Mann-Whitney p = 0.0078).

One hypothesis for explaining the association between mutation load and outcome to treat-

ment with checkpoint blockade is the generation of neoantigens, altered peptides presented

by the major histocompatibility complex that are capable of eliciting an antitumor T cell

response and are more common with increased mutation load. After performing in silico

HLA typing (Methods), we examined predicted neoantigens that were 8 to 11 amino acids in

length, resulting from the missense mutations of patients treated with atezolizumab. There was

no significant association between predicted neoantigens per megabase and either DCB or

DCB-OS. Patients with DCB had a median 4.58 (range 0.037ï¿‰39.48)predicted neoantigens per

megabase, while patients without DCB had 1.35 (range 0.00ï¿‰20.22)(n = 25, Mann-Whitney

p = 0.55, S2C Fig and S2D Fig). Filtering of predicted neoantigens to focus only on those ex-

pressed in RNA (Methods) also demonstrated no significant association between expressed

predicted neoantigens and clinical benefit with atezolizumab (n = 25, Mann-Whitney p = 0.29,

Fig 2C and S2B Fig). Here, too, we acknowledge the limitations in statistical power to detect

associations due to the sample size of our study.

The association between mutation load and response likelihood

strengthens over time

Given that the mutation load and outcomes were weakly associated in the complete IMvi-

gor210 dataset and not statistically significantly associated in this cohort, we embarked upon

0.22) in tumors from patients without DCB (n = 24, Mann-Whitney p = 0.10). (B) Tumors with less than the

median TIL proportion or TIL clonality, considered jointly as 1 feature, were less likely to display DCB (Fig 1B,

25% of patients with DCB versus 81% of patients without DCB, n = 24, Fisher’s Exact p = 0.021). (C) Patients

with pretreatment peripheral TCR clonality less than the median exhibited improved progression-free survival

(PFS, n = 29, log-rank p = 0.048). (D) Patients with pretreatment peripheral TCR clonality less than the

median exhibited improved overall survival (OS, n = 29, log-rank p = 0.011). (E) There was a significant

association between TCR clonality in the peripheral blood prior to initiating treatment and overall survival

greater than 12 months (DCB-OS) (DCB-OS: TCR clonality 0.060 [range 0.022ï¿‰0.21]; OS less than 12

months: 0.15 [range 0.031ï¿‰0.35,n = 29, Mann-Whitney p = 0.0061]). (F) There was no significant association

between pretreatment peripheral TCR clonality and DCB (DCB: TCR clonality 0.068 [range 0.027ï¿‰0.21];no

DCB: 0.14 [range 0.022ï¿‰0.35,n = 29, Mann-Whitney p = 0.25]). (G) Expansion of TCR clones found in TIL

(orange bars) occurred in the peripheral blood 3 weeks after initiating treatment in all patients. (H) The number

of TCR clones found in TIL that expanded in the peripheral blood 3 weeks after initiating treatment was 8.00

(range 4.00ï¿‰12.00) in patients with DCB and 2.50 (range 1.00ï¿‰18.00) in non-DCB patients (n = 22, Mann-

Whitney p = 0.022).

https://doi.org/10.1371/journal.pmed.1002309.g001
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Fig 2. Single nucleotide variants (SNVs) and treatment response. (A) SNVs, premature stop codons, transversions,

mutations in start or stop codons and splice site variants, as well as transitions and transversions were called for all

samples. (B) Median mutations per megabase of 3.24 (range 0.038ï¿‰11.46)in tumors from patients who progressed at

or after 6 months as compared to 0.45 (range 0.019ï¿‰9.90) in those who progressed in less than 6 months (n = 25, Mann-

Whitney p = 0.22). (C) Median expressed neoantigens in tumors from patients who progressed at or after 6 months was

1.32 (range 0.00ï¿‰6.06) versus 0.29 (range 0.00ï¿‰5.70) in those who progressed before 6 months (n = 25, Mann-Whitney

p = 0.29).

https://doi.org/10.1371/journal.pmed.1002309.g002
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an exploration of additional factors, including tumor microenvironmental and systemic mea-

sures, which may modify the importance of this variable or independently affect outcomes.

To this end, we examined the time-varying association between mutation load and PFS to

see if mutation load had a differential association with early hazards in contrast to late hazards.

We found evidence of time-varying effects of somatic mutation load on PFS in this cohort

(n = 25, p = 0.044, see Methods). We estimated these effects to consist of a stronger association

of somatic mutation load with reduced mortality or disease progression more than 3 months

after treatment (n = 11, hazard ratio (HR) = 0.69, 95% CI [0.38, 0.99]) as compared to that dur-

ing the first 3 months (n = 25, HR = 0.91, 95% CI [0.75, 1.07]; Fig 3A). This effect estimate

yielded a p-value for interaction of 0.1, which does not contradict the test for presence of the

effect (n = 25, p = 0.044) because that test is better powered. When a similar analysis was per-

formed for time-varying association with OS, the evidence in support of the existence of time-

varying effects was similar (n = 25, p = 0.082; notable, despite p> 0.05, given the PFS results

above). In terms of the estimate of these effects, patients who survived longer than 3 months

exhibited a stronger association between the number of somatic mutations per megabase and

a lower risk of subsequent mortality (n = 11, HR = 0.80, 95% CI [0.60, 1.00]) as compared to

those who survived less than or equal to 3 months (n = 25, HR = 1.02, 95% CI [0.79, 1.22],

Fig 3B). This suggests that the time-varying effect is not likely an artifact of differential associa-

tion with survival versus progression. Looking at the Kaplan-Meier estimates of PFS among

patients with mutation load per megabase above and below the median value of 1.03, it is

apparent that there is very little separation of these 2 populations until approximately 3 months

after treatment and that there is a high frequency of both progression and mortality events at

this time (Fig 3C). While we report these results using a prespecified threshold of 3 months, in

a nonparametric analysis we found that the reduction in risk associated with somatic mutation

load increased steadily over time without the emergence of a clear inflection point (S3C Fig; see

S3 Text and S3D Fig for further model interrogation). That said, we note that the 95% confi-

dence intervals around the hazard ratios prior to 3 months include 1 (all p-values> 0.05; aggre-

gate p(HR> 1) = 0.21), while those after 3 months are significantly less than 1 (all p-values<

0.05; aggregate p(HR> 1) = 0.020; p = 0.07 for interaction comparing aggregate HRs). This sug-

gests that our threshold of 3 months, which was selected based on clinical experience, may be a

convenient summary of these results.

These data suggest that in patients with rapidly progressive disease, factors other than muta-

tion load likely determine their outcome. This observation is not surprising in that clinical fac-

tor analysis of this disease state has identified a heterogeneous population of patients, with

5 clinical factors distinguishing those likely to experience a rapid and early death from those

more likely to survive longer [13]. We hypothesized that such patients might simply be too

clinically and systemically unwell to mount the necessary immune response, despite some of

them harboring tumor biomarkers thought to confer a likelihood of DCB, including elevated

mutation load. When we examined the 5-factor score in this subset relative to the rest of the

dataset, we found that, indeed, patients who survived less than or equal to 3 months exhibited

a significantly higher 5-factor score (3.00 (range 2.00ï¿‰4.00)in contrast to 1.50 (range 0.00ï¿‰

4.00) in patients who survived longer than 3 months (n = 26, Mann-Whitney p = 0.018, S3A

Fig). Patients surviving less than 3 months were much more likely to have liver metastases:

100% in patients surviving less than or equal to 3 months and 22% in patients surviving

longer than 3 months (n = 29, Fisher’s Exact p = 0.00097, S3B Fig). There were no significant

differences in these patients with respect to Bacillus Calmetteï¿‰Gueï¿‰rin (BCG) exposure (n = 29,

Fisher’s Exact p = 0.20), missense SNV load (n = 25, Mann-Whitney p = 0.26), and pretreat-

ment peripheral TCR clonality (n = 29, Mann-Whitney p = 0.12). Keeping in mind the limited

sample size of this cohort, these data suggest that there is a subset of nearly end-stage patients

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002309 May 26, 2017 13 / 24

https://doi.org/10.1371/journal.pmed.1002309


Fig 3. Time-dependent relationship between mutation load and treatment response. (A) There was a stronger association between somatic

mutation load and progression-free survival (PFS) for events occurring more than 3 months following therapy (blue box: hazard ratio [HR] = 0.69, 95% CI

[0.38, 0.99]), as compared to those in the first 3 months (red box: HR = 0.91, 95% CI [0.75, 1.07]). (B) There was a stronger association between somatic

mutation load and overall survival (OS) for events occurring more than 3 months following therapy (blue box: HR = 0.80, 95% CI [0.60, 1.00]), as compared

to those in the first 3 months (red box: HR = 1.02, 95% CI [0.79, 1.22]). (C) Kaplan-Meier estimates for PFS among patients with missense single nucleotide
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with cancer in whom clinical variables may negate immunological response, despite the pres-

ence of 1 or more favorable tumor-associated biomarkers. The inclusion of these clinical vari-

ables is warranted in future studies.

Examination of the tumor microenvironment shows evidence for

adaptive immunity and suppression in responding tumors

Several studies have suggested that an ï¿‰inflamedï¿‰tumor microenvironment, tumor, or IC

PD-L1 expression increase the likelihood of response to checkpoint blockade. As seen in the

published IMVigor 210 cohort, PD-L1 IC expression was significantly associated with DCB in

this subset (n = 29, Spearman rho = 0.48 p = 0.0083, S4A Fig). We quantified immune infiltra-

tion from RNA-seq using ESTIMATE [19]. The immune score, while associated with the TIL

proportion estimated through TCR-seq (S4B Fig), was estimated to be 764.37 (range −1195.08

to 1509.65) in patients with DCB and 263.49 (range −1100.78 to 1734.28) in patients without

DCB but was not significantly different (n = 26, Mann-Whitney p = 0.33, S4C Fig). When we

performed GSEA using the Hallmark Geneset [20], we did not observe any differentially

expressed gene sets between tumors from patients with DCB versus no DCB. Furthermore,

RNA expression of PD-L1 did not correlate with reported IC PD-L1 staining level (n = 26,

Spearman rho = 0.045 p = 0.83, S4D Fig). We did not observe a difference in tumor MHC class

I expression according to DCB (S4E Fig, HLA-A: n = 26, Mann-Whitney p = 0.26, HLA-B:

n = 26, Mann-Whitney p = 0.36, HLA-C: n = 26, Mann-Whitney p = 0.24).

Given that such agnostic approaches did not reveal a clear association between tumor mi-

croenvironment factors and response, we pursued a hypothesis-driven approach examining

the genes that show up-regulation at the cell surface during T cell exhaustion. When catego-

rized by DCB, there was no significant difference in expression of such genes, including

CTLA-4, TIGIT, HAVCR2 (TIM-3), or LAG-3 [21]. When grouped by PD-L1 staining, we

found low expression of all markers in the PD-L1 low group (IC0), as expected. However, in

the PD-L1 high group (IC2), HAVCR2 exhibited significantly higher expression in tumors

from patients who experienced DCB than in those who did not (S4F Fig). Interestingly, of the

4 IC2 tumors among HAVCR2-high patients (HAVCR2 expression greater than the median), 2

had missense SNV loads at or below the median (2 and 57); the other 2 had 180 and 412 SNVs.

Additionally, although Rosenberg and colleagues [2] found that luminal cluster II showed a

significantly higher response rate among the 4 subtypes of RNA expression from The Cancer

Genome Atlas (TCGA), no significant association was found here between the 4 clusters and

DCB (n = 20, Fisher’s Exact p = 0.36) (S4G Fig) nor between the luminal/basal subcategoriza-

tion and DCB (n = 20, Fisher’s Exact p = 1.00), possibly due to sample size.

Relative importance of somatic, immune, and clinical factors in

resistance and response to PD-L1 blockade

Unanswered questions that arise from the many studies of biomarker correlates of checkpoint

blockade response are whether measures such as mutation load, PD-L1 staining, and others

reflect the same ï¿‰tumorstateï¿‰or if each confers an independent effect on outcome?

When examined in conjunction with mutation load, the greater the expression of PD-L1,

the more negative the association of mutation load with hazard (i.e., higher mutation load was

variants (SNVs) per megabase above the median observed value of 1.03 (red) and those with counts below the median value (blue). Time (Days) is plotted

on a log-scale. For context, the frequency of observed events (progression and/or mortality) is plotted below the x-axis among patients with missense SNV

per megabase above (red) and below (blue) the median value, with the approximate schedule of follow-up scans per the study protocol (see Methods)

shown as vertical dotted lines.

https://doi.org/10.1371/journal.pmed.1002309.g003
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associated with longer survival). Among patients with tumors showing little-to-no expression

of PD-L1 (IC0 rated), each unit increase in missense SNV count per megabase was associated

with a negligible change in hazard (n = 4, HR = 1.43, 95% CI [0.75, 2.98]). Among patients

with tumors expressing PD-L1 at moderate or high levels (IC1 or IC2 staining), missense SNV

count per megabase was associated with lower risk for disease progression or mortality

(among IC1: n = 11, HR = 0.75, 95% CI [0.47, 1.14]; among IC2: n = 10, HR = 0.73, 95% CI

[0.48, 1.06]). Although our limited sample size precludes making an assertion that mutation

load is associated with survival in any particular subgroup (e.g., when looking among IC1 and

IC2 tumors alone), our data do support the presence of an interaction among these variables

(p = 0.046 for interaction; S5A Fig). Given the plausibility of the finding that somatic mutation

load may correlate better with survival among patients with an inflamed tumor microenviron-

ment, the addition of somatic mutation load to PD-L1 IC staining warrants further study.

We found a similar, albeit weaker, interaction effect when looking at the association of

somatic mutation load (missense SNV count per megabase) and PFS, according to the pres-

ence/absence of liver metastasis prior to treatment administration (p = 0.14 for interaction).

Among patients without liver metastasis, somatic mutation load was associated with a lower

risk for disease progression or mortality (n = 16, HR = 0.73, 95% CI [0.50, 1.02], S5B Fig) than

patients with liver metastasis (n = 9, HR = 0.96, 95% CI [0.66, 1.37], S5B Fig).

To our surprise, although both PD-L1 staining and mutation load were each associated

with response in the original study [2], these variables did not correlate with each other (Fig

4A). Furthermore, pretreatment peripheral TCR clonality did not correlate with mutation

load (Fig 4B). The lack of association between these variables suggests that each might have an

independent or semi-independent role in determining the likelihood of response to therapy.

TCR clonality and infiltration did, however, correlate with PD-L1 IC score: those tumors

with higher clonality or higher infiltration also featured higher PD-L1 staining (p = 0.02 and

p = 0.01, respectively, Fig 4C and 4D).

In an analysis to see whether the association between pretreatment peripheral TCR clonality

and PFS varied by PD-L1 IC score, we found some evidence of an interaction (p = 0.015 for

interaction; Fig 4E). Among patients with low levels of PD-L1 expression, there was little

association between pretreatment peripheral TCR clonality and PFS (among IC0: n = 4, HR

[mean] = 1.86, HR [median] = 1.55, 95% CI [0.50, 4.99], p(HR> 1) = 0.21; among IC1: n = 11,

HR [mean] = 0.69, HR [median] = 0.58, 95% CI [0.15, 1.84], p(HR< 1) = 0.19). Among pa-

tients with high levels of PD-L1 expression, by comparison, we observed almost complete sep-

aration of PFS according to pretreatment peripheral TCR clonality (among IC2: n = 10, HR

[mean] = 89.88, HR [median] = 23.41, 95% CI [2.43, 506.94], p(HR>1) = 0.0014; Fig 4E). Simi-

lar results were seen in analyses with respect to OS and in a logistic regression analysis for

DCB (S5C Fig, S5D Fig, S5E Fig).

To resolve the hypothesis that those patients with low peripheral TCR clonality simply were

healthier, we examined the association between 5-factor score and pretreatment peripheral

TCR clonality and did not find such an association (n = 26, Spearman rho = 0.25 p = 0.22,

S5F Fig).

In a multivariate survival model for time to disease progression or mortality, which allows

the effect of each biomarker to vary according to intratumoral PD-L1 IC score, we find that

the correlation of each intratumoral, peripheral, or clinical biomarker with disease progression

or mortality is relatively independent of the others (Fig 4F, S5G Fig). Perhaps with the notable

exception of the association between liver metastatic status and time to progression or survival,

the correlation of each intratumoral or peripheral biomarker with outcome is strongest in the

group with the highest levels of IC PD-L1 expression (S2 Table).
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Fig 4. Associations between measured somatic, immune, and clinical variables. (A) Although both

programmed death-ligand 1 (PD-L1) staining and mutation load each were weakly associated with response,

these variables were not correlated with each other (n = 25, Spearman rho = 0.14 p = 0.51). (B) Pretreatment

peripheral T cell receptor (TCR) clonality did not correlate with mutation load (n = 25, Pearson r = 0.0017

p = 0.99). (C) Tumor-infiltrating T lymphocytes (TIL) proportion as estimated by TCR sequencing was
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Discussion

The treatment of previously incurable metastatic solid tumors with checkpoint blockade

agents has led to dramatic success in a minority of patients, a finding that has generated sub-

stantial excitement in the field, with associated correlative studies and drug development.

Here, we undertook the in-depth characterization of tumors and peripheral blood from 29

patients treated on IMvigor 210, a Phase II study in which 310 patients were treated with the

anti-PD-L1 agent atezolizumab. In this cohort of patients, we illustrate the importance of host

immune factors, including intratumoral and peripheral TCR clonality, infiltration, and expan-

sion, to clinical outcomes. We did not find a significant association between mutation or

expressed neoantigen load and PFS or DCB (defined as PFS> 6 months). However, we did

observe a time-dependent relationship between mutation load and outcome, wherein a rela-

tionship between mutation burden and outcome could only be detected in those patients

surviving greater than 3 months. This analysis implies that patients who experienced rapid

progression may display systemic indicators of immune deficiency despite elevated mutation

load in the tumors. Calculation of the hazard ratios for each measured biomarker and clinical

factor underscores the concept that a complex interaction of both host and tumor variables

determines whether a patient will experience clinical benefit from anti-PD-L1 therapy. Al-

though the overall study found significant associations between mutation load as measured

by the Foundation Medicine targeted sequencing panel and radiographic response [2], there

was no statistically significant association between mutation load and DCB or survival in the

patient subset studied here, despite the similarity of our study population to the parent study.

This contrast may be due to a combination of factors. First, though statistically significant,

the association in the overall study was not categorical: as in other studies of mutation load,

this factor alone was not predictive of response. Second, we have less power to detect this asso-

ciation in our smaller subset compared with the larger studied cohort. Third, standardized

definitions and calculations of mutation load do not exist as of yet; each published study has

used differing methodologies [2,10,22,23]. Indeed, in this study, depending on the method

used, the association between mutation load and clinical outcomes varied from p< 0.08 to

p> 0.4 (area under the curve [AUC] values and p-values in S1 Table). To illustrate the fickle

nature of defining mutation load, counting only the mutations excluded by BQSR, as opposed

to only those remaining after BQSR, showed a significant association with DCB. Together,

these findings underscore the need for improved and standardized mutation calling methods.

The weak association of mutation load with DCB and the lack of such standardization render

this biomarker unfit for application to individual patients at present. Furthermore, if validated

in another dataset, this analysis implies that a clinical and immunological state may exist in

patients with advanced cancer, such that patients with very rapidly progressing disease and

expected death in less than 3 months do not respond despite the presence of positive intratu-

moral biomarkers.

In an attempt to deepen our understanding of the biology of response and resistance, we

studied additional factors. We found that even in this small dataset, TCR clonality below the

median in the peripheral blood prior to treatment, expansion of tumor-associated TCR in the

periphery 3 weeks after initiating treatment, and higher TIL proportion are all associated with

associated with PD-L1 immune cell (IC) staining (n = 24, Spearman rho = 0.51 p = 0.010). (D) TIL clonality was

associated with PD-L1 IC staining (n = 24, Spearman rho = 0.48 p = 0.017). (E) Hazard associated with log

(pretreatment peripheral TCR clonality) by level of IC PD-L1 expression (IC0, IC1, or IC2). (F) Multivariate

survival analysis of various clinical, peripheral, and intratumoral biomarkers for association with time to disease

progression or mortality, utilizing a varying-coefficient model, which allows the hazard associated with a 1-unit

increase in a biomarker’s value to vary according to the level of intratumoral PD-L1 expression (IC score).

https://doi.org/10.1371/journal.pmed.1002309.g004
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clinical benefit. These data suggest that TCR-seq provided additional insights into response

and resistance beyond mutation load and PD-L1 staining. With respect to biomarker develop-

ment, our study implies that noninvasive metrics such as pretreatment peripheral TCR clonal-

ity and known prognostic features such as the presence of liver metastases may be worthy of

further study in urothelial cancer patients treated with PD-L1 blockade.

From a mechanistic perspective, these findings imply an important relationship between

circulating and intratumoral immunity upon PD-L1 blockade. We hypothesize that low TCR

clonality in the peripheral blood prior to treatment increases the likelihood that a patient har-

bors 1 or several clones capable of tumor recognition, whether of neoantigens or tumor-associ-

ated antigens. The expansion of tumor-associated TCRs in the peripheral blood underscores

the continuity of the tumor and blood compartments, and suggests that the activity of PD-L1

blockade may involve circulating T cells more than was previously thought. Indeed, this raises

the possibility that anti-tumor T cells may home from the periphery to the tumor before later

recirculating.

Finally, though limited in power by the small sample size, we attempted to integrate the

importance of the studied variables. This analysis demonstrated both hypothesized and unex-

pected interactions. For example, while mutation load seemed to be associated with outcome

more significantly in PD-L1 IC1 and IC2 tumors, high PD-L1 IC staining in the setting of high

peripheral TCR clonality was associated with a substantial hazard for poor outcome. Given the

significance of PD-L1 expression in mediating response to anti-PD-L1 therapy, the presence of

these interactions may argue in their favor as predictive rather than prognostic biomarkers.

Further analysis is required to elucidate the role of these biomarkers in mediating response to

checkpoint blockade.

This study has several limitations. The patients under study were treated at a single institu-

tion and represent a small subset of the overall study, limiting statistical power. As a single-

arm Phase II study, there is no control arm for comparison. Tumor samples were FFPE and

were not collected immediately prior to treatment initiation. Only 1 sample per patient was

utilized, which does not necessarily capture the heterogeneity of each tumor. Finally, a number

of analyses were performed on a small number of patients without an independent validation

cohort; although most analyses were prespecified, there is a risk of Type II error, and no ad-

justments were made for multiple testing.

In conclusion, we have demonstrated the potential value of pursuing an integrated study of

somatic, immune, and clinical features in order to elucidate the biological mechanisms under-

lying response to checkpoint blockade and ultimately improve our ability to practice precision

medicine. We hope this work will motivate further multi-omics studies of response to check-

point blockade.

Supporting information

S1 Table. Choice of depth and variant allele frequency (VAF) filtering, as well as whether

or not to run Base Quality Score Recalibration (BQSR), resulted in differences in predic-

tive value for mutation load. We chose to optimize for precision, choosing the highlighted set

of filters/BQSR. Precision is defined as the fraction of filtered missense mutations in Integrated

Mutation Profiling for Actionable Cancer Targets (IMPACT) genes that were actual IMPACT

panel variants. Recall is defined as the fraction of actual IMPACT panel variants that were

found in the filtered missense results.

(DOCX)

S2 Table. Summary of results from multivariate survival analysis of various clinical,

peripheral, and intratumoral factors to estimate their independent association with hazard

Somatic, immune, and clinical correlates of response and resistance to atezoliuzmab

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002309 May 26, 2017 19 / 24

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002309.s001
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002309.s002
https://doi.org/10.1371/journal.pmed.1002309


for disease progression or mortality (progression-free survival [PFS]) and for mortality

(overall survival [OS]) according to the level of intratumoral programmed death-ligand 1

(PD-L1) expression (immune cell [IC] grade). Results are summarized as median and 95%

posterior intervals.

(DOCX)

S1 Fig. (A) Twenty-five percent of patients with durable clinical benefit (DCB) had less than

the median tumor-infiltrating T lymphocytes (TIL) proportion versus 63% of patients without

DCB (n = 24, Fisher’s Exact p = 0.19); similarly, 25% of patients with DCB had less than the

median TIL clonality versus 63% of patients without DCB (n = 24, Fisher’s Exact p = 0.19). (B)

T cell receptor (TCR) overlap between the pretreatment and 3-week posttreatment peripheral

blood in 1 patient with limited clinical benefit (progression-free survival [PFS] = 37 days)

and 1 patient with DCB (complete response [CR] at 630 days after starting treatment). The

association between pretreatment peripheral blood TCR sequences (x-axis) and posttreatment

peripheral blood TCR sequences (y-axis) is overlaid with the presence of tumor-associated T

cell clones. Gray indicates TCRs present only in the peripheral blood; blue indicates TCRs

present in the tumor and blood; orange indicates TCRs present in the tumor and expanded in

the blood with treatment. (C) There was no significant expansion of TIL-associated TCR

clones between pretreatment (3.00 [range 1.00ï¿‰9.00])and 6 weeks posttreatment (2.00 [range

1.00ï¿‰8.00]),n = 20, Mann-Whitney p = 0.17. (D) The combination of high pretreatment TIL

and low pretreatment peripheral blood TCR clonality were predictive of DCB (n = 24, Fisher’s

Exact p = 0.0069) and overall survival greater than 12 months (DCB-OS) (n = 24, Fisher’s

Exact p = 0.014). For DCB, a logit model combining both was more predictive than peripheral

blood (n = 24, log-likelihood p = 0.00029) or TIL (n = 24, log-likelihood p = 0.00051) clonality

alone. For DCB-OS, both combined were more predictive than TIL (n = 24, log-likelihood

p = 0.0029) clonality alone.

(DOCX)

S2 Fig. (A) No significant association between the number of missense single nucleotide vari-

ants (SNVs) per megabase and overall survival greater than 12 months (DCB-OS), with 2.13

(range 0.038ï¿‰11.46)in tumors from those patients who survived greater than 12 months versus

0.48 (range 0.019ï¿‰9.90)in those who did not (n = 25, Mann-Whitney p = 0.37). (B) No signifi-

cant difference was found between median expressed neoantigens in tumors from patients

who survived greater than or equal to 12 months: 1.31 (range 0.00ï¿‰6.06)versus 0.35 (range

0.00ï¿‰5.30)in those who survived less than 12 months (n = 25, Mann-Whitney p = 0.36). (C)

No significant difference was found between median predicted neoantigens per megabase:

4.58 (range 0.037ï¿‰39.48)in tumors from patients with durable clinical benefit (DCB) as com-

pared to 1.35 (range 0.00ï¿‰20.22)in those who progressed in less than 6 months (no DCB)

(n = 25, Mann-Whitney p = 0.55). (D) No significant difference was found between median

predicted neoantigens per megabase in tumors from those patients who survived greater than

12 months (3.56 [range 0.037ï¿‰39.48])as compared to 1.37 (range 0.00ï¿‰20.22)in those who did

not (no DCB-OS) (n = 25, Mann-Whitney p = 0.81).

(DOCX)

S3 Fig. (A) Patients who survived less than 3 months (red box) exhibited a significantly higher

5-factor score (3.00 [range 2.00ï¿‰4.00]as compared to 1.50 [range 0.00ï¿‰4.00]in patients who

survived >3 months; blue box; n = 26, Mann-Whitney p = 0.018). (B) Patients who survived

less than or equal to 3 months (red box) were more likely to have liver metastases (100% in

patients who survived less than or equal to 3 months and 22% in patients who survived longer

than 3 months, n = 29, Fisher’s Exact p = 0.00097). (C) The hazard ratio for each mutation per
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megabase, estimated at each unique failure time. Red box plots summarize 50% and 95% poste-

rior intervals for each observed failure/censor time, with median values shown in green. Time

(Days) is plotted on a log-scale. Estimates are not independent from one another since the

model utilizes a random-walk parameterization to allow the variance in hazard over time to be

modeled flexibly. (D) Posterior predicted intervals for progression-free survival (PFS), which

are drawn from the survival model estimating the time-varying effect of mutation count on

PFS. Intervals are shown for patients with missense single nucleotide variants (SNVs) per mega-

base above the median and those with counts below the median value (blue), for illustrative pur-

poses. This cutpoint was not used in the model; missense SNV per megabase was included as a

continuous covariate. Lines are drawn at median values of the posterior predictive distribution,

with 50% credible intervals shown in the shaded regions. Time (Days) is plotted on a log-scale.

(DOCX)

S4 Fig. (A) Programmed death-ligand 1 (PD-L1) immune cell (IC) staining as reported by the

sponsor in the published study [2], and outcomes in our cohort were significantly associated

in this substudy (n = 29, Spearman rho = 0.48 p = 0.0083). (B) ImmuneScore was associated

with tumor-infiltrating T lymphocytes (TIL) proportion (n = 24, Spearman rho = 0.47 p =

0.022). (C) There was no association between ImmuneScore and durable clinical benefit (DCB)

(DCB: 764.37 [range −1195.08 to 1509.65]; no DCB: 263.49 [range −1100.78 to 1734.28]) (n =

26, Mann-Whitney p = 0.33). (D) PD-L1 expression as measured by RNA sequencing was not

associated with PD-L1 IC level (n = 26, Spearman rho = 0.045 p = 0.83). Tumor cell PD-L1

staining was not available. (E) Human leukocyte antigen (HLA) Class I expression was not asso-

ciated with DCB (HLA-A: n = 26, Mann-Whitney p = 0.26, HLA-B: n = 26, Mann-Whitney

p = 0.36, HLA-C: n = 26, Mann-Whitney p = 0.24). (F) Expression of other inhibitory markers,

in particular HAVCR2 (also known as TIM-3), was higher in DCB patients in the IC2 group.

(G) No association was found between TCGA RNA Subtype and response in this substudy

(n = 20, Fisher’s Exact p = 0.36).

(DOCX)

S5 Fig. (A) The hazard associated with log(missense single nucleotide variant [SNV] count

per megabase) by level of immune cell (IC) (IC0, IC1, or IC2) programmed death-ligand 1

(PD-L1) expression. (B) The hazard associated with log(missense SNV count per megabase)

by presence or absence of liver metastasis at enrollment. (C) The association of peripheral T

cell receptor (TCR) clonality prior to treatment with time to mortality (overall survival [OS])

varies according to IC (IC0, IC1, or IC2) PD-L1 expression. (D) The association of peripheral

TCR clonality prior to treatment with durable clinical benefit (DCB) varies according to IC

(IC0, IC1, or IC2) PD-L1 expression. (E) The association of peripheral TCR clonality prior to

treatment with DCB (OS) varies according to IC (IC0, IC1, or IC2) PD-L1 expression. (F)

There was no significant relationship between 5-Factor score and pretreatment TCR clonality

(n = 26, Spearman rho = 0.25 p = 0.22). (G) Multivariate survival analysis of various clinical,

peripheral, and intratumoral biomarkers for association with time to mortality (OS), utilizing

a varying-coefficient model, which allows the hazard associated with a 1-unit increase in a bio-

marker’s value to vary according to the level of intratumoral PD-L1 expression (IC score).

Note that the x-axis has been truncated at a value of 10 for clarity, even though this results in

the exclusion of some estimated hazard ratio (HR) values (specifically that for pretreatment

peripheral TCR clonality among IC2 patients).

(DOCX)

S6 Fig. (A) No significant association between the number of missense single nucleotide vari-

ants (SNVs) found on MSK-IMPACT and durable clinical benefit (DCB) (DCB 0.13 (range
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0.00ï¿‰0.31)versus no DCB 0.046 (range 0.00ï¿‰0.37)(n = 25, Mann-Whitney p = 0.42). (B) No

significant association between the number of missense SNV found on MSK-IMPACT and

overall survival (OS) (survival greater than 12 months 0.093 [range 0.00ï¿‰0.31]versus less than

12 months 0.074 [range 0.00ï¿‰0.37])(n = 25, Mann-Whitney p = 0.78). (C) There was no signif-

icant difference in apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APO-

BEC) signature found in tumors from patients with progression-free survival (PFS) DCB (0.19

[range 0.00ï¿‰0.56])as compared to no DCB (0.00 [range 0.00ï¿‰0.46])(n = 25, Mann-Whitney

p = 0.23). (D) There was a significant correlation between missense SNV count and APOBEC

signature mutations (n = 25, Pearson r = 0.40 p = 0.048). (E) There was no significant associa-

tion between FGFR3 mutations or expression (n = 26, Mann-Whitney p = 0.39). (F) There was

no significant association between MYC expression and outcome measured by PFS DCB (n =

26, Mann-Whitney p = 0.87). (G) There was no significant association between DDR mutations

rated as ï¿‰possibleï¿‰by PolyPhen and DCB (n = 25, Mann-Whitney p = 0.20). (H) Univariate

association of exonic SNV, missense SNV, and neoepitope load with DCB, with (blue bars) and

without (red bars) filtering by expression. (I) Univariate association of exonic SNV, missense

SNV, and neoepitope load with OS greater than 12 months, with (blue bars) and without (red

bars) filtering by expression. (J) Univariate association of exonic SNV, missense SNV, and neoe-

pitope load with PFS, showing results with (blue bars) and without (red bars) filtering by expres-

sion. (K) Univariate association of exonic SNV, missense SNV, and neoepitope load with OS,

showing results with (blue bars) and without (red bars) filtering by expression. (L) Univariate

association of expressed/total ratio for exonic SNV, missense SNV, and neoantigen loads with

PFS. (M) Univariate association of expressed/total ratio for exonic SNV, missense SNV, and

neoantigen loads with OS. (N) Univariate association of expressed/total ratio for exonic SNV,

missense SNV, and neoantigen loads with DCB (PFS greater than 12 months). (O) Univariate

association of expressed/total ratio for exonic SNV, missense SNV, and neoantigen loads with

OS greater than 12 months. (P) There was no significant association between pack years of

reported smoking history and DCB (n = 29, Mann-Whitney p = 0.87). (Q) There were signifi-

cant associations between PFS (n = 29, log-rank p = 0.024) and OS (n = 29, log-rank p = 0.018)

and the presence of liver metastasis. There was a significant association between the presence of

visceral metastases and poor OS (n = 29, log-rank p = 0.020). (S) There was not a significant

association between 5-factor score and OS (n = 26, log-rank p = 0.13). (T) No significant associ-

ation between the number of expressed missense SNV per megabase and DCB (DCB 0.79

[range 0.00ï¿‰3.36]versus no DCB: 0.16 [range 0.00ï¿‰3.34]),n = 25, Mann-Whitney p = 0.26.

(DOCX)

S1 Text. STROBE criteria.

(DOCX)

S2 Text. Prespecified analysis plan.

(DOCX)

S3 Text. Supplementary analyses.

(DOCX)
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