Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
EMBO J. 1996 Apr 15; 15(8): 2020–2028.
PMCID: PMC450121
PMID: 8617249

Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes.

Abstract

Budding of enveloped viruses has been shown to be driven by interactions between a nucleocapsid and a proteolipid membrane. By contrast, we here describe the assembly of viral envelopes independent of a nucleocapsid. Membrane particles containing coronaviral envelope proteins were assembled in and released from animal cells co-expressing these proteins' genes from transfected plasmids. Of the three viral membrane proteins only two were required for particle formation, the membrane glycoprotein (M) and the small envelope protein (E). The spike (S) protein was dispensable but was incorporated when present. Importantly, the nucleocapsid protein (N) was neither required not taken into the particles when present. The E protein, recently recognized to be a structural protein, was shown to be an integral membrane protein. The envelope vesicles were found by immunogold labelling and electron microscopy to form a homogeneous population of spherical particles indistinguishable from authentic coronavirions in size (approximately 100 nm in diameter) and shape. They were less dense than virions and sedimented slightly slower than virions in sucrose velocity gradients. The nucleocapsid-independent formation of apparently bona fide viral envelopes represents a novel mode of virus assembly.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Abraham S, Kienzle TE, Lapps WE, Brian DA. Sequence and expression analysis of potential nonstructural proteins of 4.9, 4.8, 12.7, and 9.5 kDa encoded between the spike and membrane protein genes of the bovine coronavirus. Virology. 1990 Aug;177(2):488–495. [PMC free article] [PubMed] [Google Scholar]
  • Allison SL, Stadler K, Mandl CW, Kunz C, Heinz FX. Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. J Virol. 1995 Sep;69(9):5816–5820. [PMC free article] [PubMed] [Google Scholar]
  • Bredenbeek PJ, Charite J, Noten JF, Luytjes W, Horzinek MC, van der Zeijst BA, Spaan WJ. Sequences involved in the replication of coronaviruses. Adv Exp Med Biol. 1987;218:65–72. [PubMed] [Google Scholar]
  • Bruss V, Ganem D. The role of envelope proteins in hepatitis B virus assembly. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1059–1063. [PMC free article] [PubMed] [Google Scholar]
  • Budzilowicz CJ, Weiss SR. In vitro synthesis of two polypeptides from a nonstructural gene of coronavirus mouse hepatitis virus strain A59. Virology. 1987 Apr;157(2):509–515. [PMC free article] [PubMed] [Google Scholar]
  • Delchambre M, Gheysen D, Thines D, Thiriart C, Jacobs E, Verdin E, Horth M, Burny A, Bex F. The GAG precursor of simian immunodeficiency virus assembles into virus-like particles. EMBO J. 1989 Sep;8(9):2653–2660. [PMC free article] [PubMed] [Google Scholar]
  • Dubois MF, Pourcel C, Rousset S, Chany C, Tiollais P. Excretion of hepatitis B surface antigen particles from mouse cells transformed with cloned viral DNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4549–4553. [PMC free article] [PubMed] [Google Scholar]
  • Dubois-Dalcq ME, Doller EW, Haspel MV, Holmes KV. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virology. 1982 Jun;119(2):317–331. [PMC free article] [PubMed] [Google Scholar]
  • Elroy-Stein O, Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743–6747. [PMC free article] [PubMed] [Google Scholar]
  • Fleming JO, Stohlman SA, Harmon RC, Lai MM, Frelinger JA, Weiner LP. Antigenic relationships of murine coronaviruses: analysis using monoclonal antibodies to JHM (MHV-4) virus. Virology. 1983 Dec;131(2):296–307. [PMC free article] [PubMed] [Google Scholar]
  • Fuerst TR, Niles EG, Studier FW, Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. [PMC free article] [PubMed] [Google Scholar]
  • Fujiki Y, Hubbard AL, Fowler S, Lazarow PB. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. [PMC free article] [PubMed] [Google Scholar]
  • Garoff H, Wilschut J, Liljeström P, Wahlberg JM, Bron R, Suomalainen M, Smyth J, Salminen A, Barth BU, Zhao H, et al. Assembly and entry mechanisms of Semliki Forest virus. Arch Virol Suppl. 1994;9:329–338. [PubMed] [Google Scholar]
  • Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, De Wilde M. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell. 1989 Oct 6;59(1):103–112. [PubMed] [Google Scholar]
  • Gilmore W, Fleming JO, Stohlman SA, Weiner LP. Characterization of the structural proteins of the murine coronavirus strain A59 using monoclonal antibodies. Proc Soc Exp Biol Med. 1987 Jun;185(2):177–186. [PubMed] [Google Scholar]
  • Godet M, L'Haridon R, Vautherot JF, Laude H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992 Jun;188(2):666–675. [PMC free article] [PubMed] [Google Scholar]
  • Göttlinger HG, Dorfman T, Sodroski JG, Haseltine WA. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3195–3199. [PMC free article] [PubMed] [Google Scholar]
  • Hobman TC, Lundstrom ML, Mauracher CA, Woodward L, Gillam S, Farquhar MG. Assembly of rubella virus structural proteins into virus-like particles in transfected cells. Virology. 1994 Aug 1;202(2):574–585. [PubMed] [Google Scholar]
  • Hogue BG, Brian DA. Structural proteins of human respiratory coronavirus OC43. Virus Res. 1986 Aug;5(2-3):131–144. [PMC free article] [PubMed] [Google Scholar]
  • Holmes KV, Doller EW, Sturman LS. Tunicamycin resistant glycosylation of coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981 Dec;115(2):334–344. [PMC free article] [PubMed] [Google Scholar]
  • Karacostas V, Nagashima K, Gonda MA, Moss B. Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8964–8967. [PMC free article] [PubMed] [Google Scholar]
  • Klumperman J, Locker JK, Meijer A, Horzinek MC, Geuze HJ, Rottier PJ. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol. 1994 Oct;68(10):6523–6534. [PMC free article] [PubMed] [Google Scholar]
  • Konishi E, Pincus S, Paoletti E, Shope RE, Burrage T, Mason PW. Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology. 1992 Jun;188(2):714–720. [PubMed] [Google Scholar]
  • Locker JK, Griffiths G, Horzinek MC, Rottier PJ. O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. J Biol Chem. 1992 Jul 15;267(20):14094–14101. [PMC free article] [PubMed] [Google Scholar]
  • Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994 Jan;124(1-2):55–70. [PMC free article] [PubMed] [Google Scholar]
  • Locker JK, Opstelten DJ, Ericsson M, Horzinek MC, Rottier PJ. Oligomerization of a trans-Golgi/trans-Golgi network retained protein occurs in the Golgi complex and may be part of its retention. J Biol Chem. 1995 Apr 14;270(15):8815–8821. [PubMed] [Google Scholar]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed] [Google Scholar]
  • Laub O, Rall LB, Truett M, Shaul Y, Standring DN, Valenzuela P, Rutter WJ. Synthesis of hepatitis B surface antigen in mammalian cells: expression of the entire gene and the coding region. J Virol. 1983 Oct;48(1):271–280. [PMC free article] [PubMed] [Google Scholar]
  • Liao CL, Zhang X, Lai MM. Coronavirus defective-interfering RNA as an expression vector: the generation of a pseudorecombinant mouse hepatitis virus expressing hemagglutinin-esterase. Virology. 1995 Apr 1;208(1):319–327. [PMC free article] [PubMed] [Google Scholar]
  • Liljeström P, Lusa S, Huylebroeck D, Garoff H. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J Virol. 1991 Aug;65(8):4107–4113. [PMC free article] [PubMed] [Google Scholar]
  • Liu DX, Inglis SC. Association of the infectious bronchitis virus 3c protein with the virion envelope. Virology. 1991 Dec;185(2):911–917. [PMC free article] [PubMed] [Google Scholar]
  • Loewy A, Smyth J, von Bonsdorff CH, Liljeström P, Schlesinger MJ. The 6-kilodalton membrane protein of Semliki Forest virus is involved in the budding process. J Virol. 1995 Jan;69(1):469–475. [PMC free article] [PubMed] [Google Scholar]
  • Lopez S, Yao JS, Kuhn RJ, Strauss EG, Strauss JH. Nucleocapsid-glycoprotein interactions required for assembly of alphaviruses. J Virol. 1994 Mar;68(3):1316–1323. [PMC free article] [PubMed] [Google Scholar]
  • Machamer CE, Mentone SA, Rose JK, Farquhar MG. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6944–6948. [PMC free article] [PubMed] [Google Scholar]
  • Macnaughton MR, Davies HA. Two particle types of avian infectious bronchitis virus. J Gen Virol. 1980 Apr;47(2):365–372. [PubMed] [Google Scholar]
  • Mason PW, Pincus S, Fournier MJ, Mason TL, Shope RE, Paoletti E. Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology. 1991 Jan;180(1):294–305. [PubMed] [Google Scholar]
  • Mounir S, Talbot PJ. Sequence analysis of the membrane protein gene of human coronavirus OC43 and evidence for O-glycosylation. J Gen Virol. 1992 Oct;73(Pt 10):2731–2736. [PubMed] [Google Scholar]
  • Opstelten DJ, de Groote P, Horzinek MC, Rottier PJ. Folding of the mouse hepatitis virus spike protein and its association with the membrane protein. Arch Virol Suppl. 1994;9:319–328. [PubMed] [Google Scholar]
  • Opstelten DJ, Raamsman MJ, Wolfs K, Horzinek MC, Rottier PJ. Envelope glycoprotein interactions in coronavirus assembly. J Cell Biol. 1995 Oct;131(2):339–349. [PMC free article] [PubMed] [Google Scholar]
  • Parent LJ, Bennett RP, Craven RC, Nelle TD, Krishna NK, Bowzard JB, Wilson CB, Puffer BA, Montelaro RC, Wills JW. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J Virol. 1995 Sep;69(9):5455–5460. [PMC free article] [PubMed] [Google Scholar]
  • Patzer EJ, Nakamura GR, Simonsen CC, Levinson AD, Brands R. Intracellular assembly and packaging of hepatitis B surface antigen particles occur in the endoplasmic reticulum. J Virol. 1986 Jun;58(3):884–892. [PMC free article] [PubMed] [Google Scholar]
  • Qiu Z, Ou D, Hobman TC, Gillam S. Expression and characterization of virus-like particles containing rubella virus structural proteins. J Virol. 1994 Jun;68(6):4086–4091. [PMC free article] [PubMed] [Google Scholar]
  • Rolls MM, Webster P, Balba NH, Rose JK. Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. Cell. 1994 Nov 4;79(3):497–506. [PubMed] [Google Scholar]
  • Rottier PJ, Rose JK. Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. J Virol. 1987 Jun;61(6):2042–2045. [PMC free article] [PubMed] [Google Scholar]
  • Rottier PJ, Horzinek MC, van der Zeijst BA. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J Virol. 1981 Nov;40(2):350–357. [PMC free article] [PubMed] [Google Scholar]
  • Rottier PJ, Spaan WJ, Horzinek MC, van der Zeijst BA. Translation of three mouse hepatitis virus strain A59 subgenomic RNAs in Xenopus laevis oocytes. J Virol. 1981 Apr;38(1):20–26. [PMC free article] [PubMed] [Google Scholar]
  • Simon K, Lingappa VR, Ganem D. Secreted hepatitis B surface antigen polypeptides are derived from a transmembrane precursor. J Cell Biol. 1988 Dec;107(6 Pt 1):2163–2168. [PMC free article] [PubMed] [Google Scholar]
  • Slot JW, Geuze HJ. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  • Smith AR, Boursnell ME, Binns MM, Brown TD, Inglis SC. Identification of a new membrane-associated polypeptide specified by the coronavirus infectious bronchitis virus. J Gen Virol. 1990 Jan;71(Pt 1):3–11. [PubMed] [Google Scholar]
  • Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression. J Gen Virol. 1988 Dec;69(Pt 12):2939–2952. [PubMed] [Google Scholar]
  • Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994 Sep;58(3):491–562. [PMC free article] [PubMed] [Google Scholar]
  • Subbramanian RA, Cohen EA. Molecular biology of the human immunodeficiency virus accessory proteins. J Virol. 1994 Nov;68(11):6831–6835. [PMC free article] [PubMed] [Google Scholar]
  • Thiel V, Siddell SG. Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gen Virol. 1994 Nov;75(Pt 11):3041–3046. [PubMed] [Google Scholar]
  • Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984 Mar;33(2):281–293. [PubMed] [Google Scholar]
  • Tooze SA, Tooze J, Warren G. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J Cell Biol. 1988 May;106(5):1475–1487. [PMC free article] [PubMed] [Google Scholar]
  • van der Most RG, Bredenbeek PJ, Spaan WJ. A domain at the 3' end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J Virol. 1991 Jun;65(6):3219–3226. [PMC free article] [PubMed] [Google Scholar]
  • Vennema H, Heijnen L, Zijderveld A, Horzinek MC, Spaan WJ. Intracellular transport of recombinant coronavirus spike proteins: implications for virus assembly. J Virol. 1990 Jan;64(1):339–346. [PMC free article] [PubMed] [Google Scholar]
  • Vennema H, Rijnbrand R, Heijnen L, Horzinek MC, Spaan WJ. Enhancement of the vaccinia virus/phage T7 RNA polymerase expression system using encephalomyocarditis virus 5'-untranslated region sequences. Gene. 1991 Dec 15;108(2):201–209. [PMC free article] [PubMed] [Google Scholar]
  • Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP, Leis J. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol. 1994 Oct;68(10):6605–6618. [PMC free article] [PubMed] [Google Scholar]
  • Yamshchikov VF, Compans RW. Regulation of the late events in flavivirus protein processing and maturation. Virology. 1993 Jan;192(1):38–51. [PubMed] [Google Scholar]
  • Zhao H, Lindqvist B, Garoff H, von Bonsdorff CH, Liljeström P. A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. EMBO J. 1994 Sep 15;13(18):4204–4211. [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group