Abstract
Because naturally occurring organic matter is thought to interfere with virus adsorption to microporous filters, humic and fulvic acids isolated from a highly colored, soft surface water were used as model organics in studies on poliovirus adsorption to and recovery from electropositive Virosorb 1MDS and electronegative Filterite filters. Solutions of activated carbon-treated tap water containing 3, 10, and 30-mg/liter concentrations of humic or fulvic acid were seeded with known amounts of poliovirus and processed with Virosorb 1MDS filters at pH 7.5 or Filterite filters at pH 3.5 (with and without 5 mM MgCl2). Organic acids caused appreciable reductions in virus adsorption and recovery efficiencies with both types of filter. Fulvic acid caused greater reductions in poliovirus recovery with Virosorb 1MDS filters than with Filterite filters. Fulvic acid interference with poliovirus recovery by Filterite filters was overcome by the presence of 5 mM MgCl2. Although humic acid reduced poliovirus recoveries by both types of filter, its greatest effect was on virus elution and recovery from Filterite filters. Single-particle analyses demonstrated MgCl2 enhancement of poliovirus association with both organic acids at pH 3.5. The mechanisms by which each organic acid reduced virus adsorption and recovery appeared to be different for each type of filter.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bixby R. L., O'Brien D. J. Influence of fulvic acid on bacteriophage adsorption and complexation in soil. Appl Environ Microbiol. 1979 Nov;38(5):840–845. doi: 10.1128/aem.38.5.840-845.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrah S. R., Gerba C. P., Wallis C., Melnick J. L. Concentration of viruses from large volumes of tap water using pleated membrane filters. Appl Environ Microbiol. 1976 Feb;31(2):221–226. doi: 10.1128/aem.31.2.221-226.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrah S., Wallis C., Shaffer P. T., Melnick J. L. Reconcentration of poliovirus from sewage. Appl Environ Microbiol. 1976 Nov;32(5):653–658. doi: 10.1128/aem.32.5.653-658.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floyd R., Sharp D. G. Viral aggregation: effects of salts on the aggregation of poliovirus and reovirus at low pH. Appl Environ Microbiol. 1978 Jun;35(6):1084–1094. doi: 10.1128/aem.35.6.1084-1094.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metcalf T. G., Wallis C., Melnick J. L. Environmental factors influencing isolation of enteroviruses from polluted surface waters. Appl Microbiol. 1974 May;27(5):920–926. doi: 10.1128/am.27.5.920-926.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobsey M. D., Carrick R. J., Jensen H. R. Improved methods for detecting enteric viruses in oysters. Appl Environ Microbiol. 1978 Jul;36(1):121–128. doi: 10.1128/aem.36.1.121-128.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobsey M. D., Glass J. S. Influence of water quality on enteric virus concentration by microporous filter methods. Appl Environ Microbiol. 1984 May;47(5):956–960. doi: 10.1128/aem.47.5.956-960.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobsey M. D., Glass J. S. Poliovirus concentration from tap water with electropositive adsorbent filters. Appl Environ Microbiol. 1980 Aug;40(2):201–210. doi: 10.1128/aem.40.2.201-210.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobsey M. D., Wallis C., Henderson M., Melnick J. L. Concentration of enteroviruses from large volumes of water. Appl Microbiol. 1973 Oct;26(4):529–534. doi: 10.1128/am.26.4.529-534.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallis C., Melnick J. L. Concentration of viruses from sewage by adsorption on millipore membranes. Bull World Health Organ. 1967;36(2):219–225. [PMC free article] [PubMed] [Google Scholar]