Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1996 Oct;16(10):5674–5682. doi: 10.1128/mcb.16.10.5674

Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2.

S Corbalan-Garcia 1, S S Yang 1, K R Degenhardt 1, D Bar-Sagi 1
PMCID: PMC231567  PMID: 8816480

Abstract

The Son of sevenless proteins (Sos) are guanine nucleotide exchange factors involved in the activation of Ras by cytoplasmic and receptor tyrosine kinases. Growth factor stimulation rapidly induces the phosphorylation of Sos on multiple serine and threonine sites. Previous studies have demonstrated that growth factor-induced Sos phosphorylation occurs at the C-terminal region of the protein and is mediated, in part, by mitogen-activated protein (MAP) kinase. In this report, we describe the identification of five MAP kinase sites (S-1137, S-1167, S-1178, S-1193, and S-1197) on hSos1. We demonstrate that four of these sites, S-1132, S-1167, S-1178, and S-1193, become phosphorylated following growth factor stimulation. The MAP kinase phosphorylation sites are clustered within a region encompassing three proline-rich SH3-binding sites in the C-terminal domain of hSos1. Replacing the MAP kinase phosphorylation sites with alanine residues results in an increase in the binding affinity of Grb2 to hSos1. Interestingly, hSos2 contains only one MAP kinase phosphorylation site and, as demonstrated previously, has an increased affinity toward Grb2 compared with hSos1. These results suggest a role for MAP kinase in the regulation of Grb2-Sos interactions. Since the binding of Grb2 is important for Sos function, the phosphorylation-dependent modulation of Grb2-Sos association may provide a means of controlling Ras activation.

Full Text

The Full Text of this article is available as a PDF (560.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronheim A., Engelberg D., Li N., al-Alawi N., Schlessinger J., Karin M. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell. 1994 Sep 23;78(6):949–961. doi: 10.1016/0092-8674(94)90271-2. [DOI] [PubMed] [Google Scholar]
  2. Baltensperger K., Kozma L. M., Cherniack A. D., Klarlund J. K., Chawla A., Banerjee U., Czech M. P. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes. Science. 1993 Jun 25;260(5116):1950–1952. doi: 10.1126/science.8391166. [DOI] [PubMed] [Google Scholar]
  3. Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
  4. Buday L., Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 1993 May 7;73(3):611–620. doi: 10.1016/0092-8674(93)90146-h. [DOI] [PubMed] [Google Scholar]
  5. Buday L., Warne P. H., Downward J. Downregulation of the Ras activation pathway by MAP kinase phosphorylation of Sos. Oncogene. 1995 Oct 5;11(7):1327–1331. [PubMed] [Google Scholar]
  6. Burgering B. M., Pronk G. J., van Weeren P. C., Chardin P., Bos J. L. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J. 1993 Nov;12(11):4211–4220. doi: 10.1002/j.1460-2075.1993.tb06105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chardin P., Camonis J. H., Gale N. W., van Aelst L., Schlessinger J., Wigler M. H., Bar-Sagi D. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science. 1993 May 28;260(5112):1338–1343. doi: 10.1126/science.8493579. [DOI] [PubMed] [Google Scholar]
  8. Cherniack A. D., Klarlund J. K., Conway B. R., Czech M. P. Disassembly of Son-of-sevenless proteins from Grb2 during p21ras desensitization by insulin. J Biol Chem. 1995 Jan 27;270(4):1485–1488. [PubMed] [Google Scholar]
  9. Cherniack A. D., Klarlund J. K., Czech M. P. Phosphorylation of the Ras nucleotide exchange factor son of sevenless by mitogen-activated protein kinase. J Biol Chem. 1994 Feb 18;269(7):4717–4720. [PubMed] [Google Scholar]
  10. Clark-Lewis I., Sanghera J. S., Pelech S. L. Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J Biol Chem. 1991 Aug 15;266(23):15180–15184. [PubMed] [Google Scholar]
  11. Corbalan-Garcia S., Degenhardt K. R., Bar-Sagi D. Insulin-induced dissociation of Sos from Grb2 does not contribute to the down regulation of Ras activation. Oncogene. 1996 Mar 7;12(5):1063–1068. [PubMed] [Google Scholar]
  12. Dong Chen, Waters S. B., Holt K. H., Pessin J. E. SOS phosphorylation and disassociation of the Grb2-SOS complex by the ERK and JNK signaling pathways. J Biol Chem. 1996 Mar 15;271(11):6328–6332. doi: 10.1074/jbc.271.11.6328. [DOI] [PubMed] [Google Scholar]
  13. Egan S. E., Giddings B. W., Brooks M. W., Buday L., Sizeland A. M., Weinberg R. A. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature. 1993 May 6;363(6424):45–51. doi: 10.1038/363045a0. [DOI] [PubMed] [Google Scholar]
  14. Gonzalez F. A., Raden D. L., Davis R. J. Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem. 1991 Nov 25;266(33):22159–22163. [PubMed] [Google Scholar]
  15. Haycock J. W., Ahn N. G., Cobb M. H., Krebs E. G. ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2365–2369. doi: 10.1073/pnas.89.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holt K. H., Kasson B. G., Pessin J. E. Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase. Mol Cell Biol. 1996 Feb;16(2):577–583. doi: 10.1128/mcb.16.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karlovich C. A., Bonfini L., McCollam L., Rogge R. D., Daga A., Czech M. P., Banerjee U. In vivo functional analysis of the Ras exchange factor son of sevenless. Science. 1995 Apr 28;268(5210):576–579. doi: 10.1126/science.7725106. [DOI] [PubMed] [Google Scholar]
  18. Li N., Batzer A., Daly R., Yajnik V., Skolnik E., Chardin P., Bar-Sagi D., Margolis B., Schlessinger J. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature. 1993 May 6;363(6424):85–88. doi: 10.1038/363085a0. [DOI] [PubMed] [Google Scholar]
  19. Li N., Schlessinger J., Margolis B. Autophosphorylation mutants of the EGF-receptor signal through auxiliary mechanisms involving SH2 domain proteins. Oncogene. 1994 Dec;9(12):3457–3465. [PubMed] [Google Scholar]
  20. Lowenstein E. J., Daly R. J., Batzer A. G., Li W., Margolis B., Lammers R., Ullrich A., Skolnik E. Y., Bar-Sagi D., Schlessinger J. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992 Aug 7;70(3):431–442. doi: 10.1016/0092-8674(92)90167-b. [DOI] [PubMed] [Google Scholar]
  21. Mayer B. J., Baltimore D. Signalling through SH2 and SH3 domains. Trends Cell Biol. 1993 Jan;3(1):8–13. doi: 10.1016/0962-8924(93)90194-6. [DOI] [PubMed] [Google Scholar]
  22. McCollam L., Bonfini L., Karlovich C. A., Conway B. R., Kozma L. M., Banerjee U., Czech M. P. Functional roles for the pleckstrin and Dbl homology regions in the Ras exchange factor Son-of-sevenless. J Biol Chem. 1995 Jul 7;270(27):15954–15957. doi: 10.1074/jbc.270.27.15954. [DOI] [PubMed] [Google Scholar]
  23. Porfiri E., McCormick F. Regulation of epidermal growth factor receptor signaling by phosphorylation of the ras exchange factor hSOS1. J Biol Chem. 1996 Mar 8;271(10):5871–5877. doi: 10.1074/jbc.271.10.5871. [DOI] [PubMed] [Google Scholar]
  24. Rozakis-Adcock M., Fernley R., Wade J., Pawson T., Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993 May 6;363(6424):83–85. doi: 10.1038/363083a0. [DOI] [PubMed] [Google Scholar]
  25. Rozakis-Adcock M., McGlade J., Mbamalu G., Pelicci G., Daly R., Li W., Batzer A., Thomas S., Brugge J., Pelicci P. G. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature. 1992 Dec 17;360(6405):689–692. doi: 10.1038/360689a0. [DOI] [PubMed] [Google Scholar]
  26. Rozakis-Adcock M., van der Geer P., Mbamalu G., Pawson T. MAP kinase phosphorylation of mSos1 promotes dissociation of mSos1-Shc and mSos1-EGF receptor complexes. Oncogene. 1995 Oct 5;11(7):1417–1426. [PubMed] [Google Scholar]
  27. Russo G. L., Vandenberg M. T., Yu I. J., Bae Y. S., Franza B. R., Jr, Marshak D. R. Casein kinase II phosphorylates p34cdc2 kinase in G1 phase of the HeLa cell division cycle. J Biol Chem. 1992 Oct 5;267(28):20317–20325. [PubMed] [Google Scholar]
  28. Schlessinger J., Bar-Sagi D. Activation of Ras and other signaling pathways by receptor tyrosine kinases. Cold Spring Harb Symp Quant Biol. 1994;59:173–179. doi: 10.1101/sqb.1994.059.01.021. [DOI] [PubMed] [Google Scholar]
  29. Shibuya E. K., Polverino A. J., Chang E., Wigler M., Ruderman J. V. Oncogenic ras triggers the activation of 42-kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9831–9835. doi: 10.1073/pnas.89.20.9831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Skolnik E. Y., Lee C. H., Batzer A., Vicentini L. M., Zhou M., Daly R., Myers M. J., Jr, Backer J. M., Ullrich A., White M. F. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 1993 May;12(5):1929–1936. doi: 10.1002/j.1460-2075.1993.tb05842.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Songyang Z., Blechner S., Hoagland N., Hoekstra M. F., Piwnica-Worms H., Cantley L. C. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol. 1994 Nov 1;4(11):973–982. doi: 10.1016/s0960-9822(00)00221-9. [DOI] [PubMed] [Google Scholar]
  32. Wang W., Fisher E. M., Jia Q., Dunn J. M., Porfiri E., Downward J., Egan S. E. The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nat Genet. 1995 Jul;10(3):294–300. doi: 10.1038/ng0795-294. [DOI] [PubMed] [Google Scholar]
  33. Waters S. B., Holt K. H., Ross S. E., Syu L. J., Guan K. L., Saltiel A. R., Koretzky G. A., Pessin J. E. Desensitization of Ras activation by a feedback disassociation of the SOS-Grb2 complex. J Biol Chem. 1995 Sep 8;270(36):20883–20886. doi: 10.1074/jbc.270.36.20883. [DOI] [PubMed] [Google Scholar]
  34. Waters S. B., Yamauchi K., Pessin J. E. Insulin-stimulated disassociation of the SOS-Grb2 complex. Mol Cell Biol. 1995 May;15(5):2791–2799. doi: 10.1128/mcb.15.5.2791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wigler M., Silverstein S., Lee L. S., Pellicer A., Cheng Y. c., Axel R. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 1977 May;11(1):223–232. doi: 10.1016/0092-8674(77)90333-6. [DOI] [PubMed] [Google Scholar]
  36. Yang S. S., Van Aelst L., Bar-Sagi D. Differential interactions of human Sos1 and Sos2 with Grb2. J Biol Chem. 1995 Aug 4;270(31):18212–18215. doi: 10.1074/jbc.270.31.18212. [DOI] [PubMed] [Google Scholar]
  37. Zhao L. J., Zhang Q. X., Padmanabhan R. Polymerase chain reaction-based point mutagenesis protocol. Methods Enzymol. 1993;217:218–227. doi: 10.1016/0076-6879(93)17064-c. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES