Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Biochem J. 2003 Mar 15; 370(Pt 3): 737–749.
PMCID: PMC1223209
PMID: 12429021

Histone deacetylases (HDACs): characterization of the classical HDAC family.

Abstract

Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.

Full Text

The Full Text of this article is available as a PDF (232K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet. 2001 Apr;10(7):693–698. [PubMed] [Google Scholar]
  • Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000 Sep;20(18):6891–6903. [PMC free article] [PubMed] [Google Scholar]
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000 Jan 6;403(6765):41–45. [PubMed] [Google Scholar]
  • Bjerling Pernilla, Silverstein Rebecca A, Thon Geneviève, Caudy Amy, Grewal Shiv, Ekwall Karl. Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol. 2002 Apr;22(7):2170–2181. [PMC free article] [PubMed] [Google Scholar]
  • Forsberg EC, Bresnick EH. Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays. 2001 Sep;23(9):820–830. [PubMed] [Google Scholar]
  • Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000 Jul;184(1):1–16. [PubMed] [Google Scholar]
  • Timmermann S, Lehrmann H, Polesskaya A, Harel-Bellan A. Histone acetylation and disease. Cell Mol Life Sci. 2001 May;58(5-6):728–736. [PMC free article] [PubMed] [Google Scholar]
  • He LZ, Tolentino T, Grayson P, Zhong S, Warrell RP, Jr, Rifkind RA, Marks PA, Richon VM, Pandolfi PP. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest. 2001 Nov;108(9):1321–1330. [PMC free article] [PubMed] [Google Scholar]
  • Zhou Da-Cheng, Kim Soon H, Ding Wei, Schultz Cynthia, Warrell Raymond P, Jr, Gallagher Robert E. Frequent mutations in the ligand-binding domain of PML-RARalpha after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood. 2002 Feb 15;99(4):1356–1363. [PubMed] [Google Scholar]
  • Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 2001 Dec 1;61(23):8492–8497. [PubMed] [Google Scholar]
  • Minucci S, Nervi C, Lo Coco F, Pelicci PG. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene. 2001 May 28;20(24):3110–3115. [PubMed] [Google Scholar]
  • Kitamura K, Hoshi S, Koike M, Kiyoi H, Saito H, Naoe T. Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br J Haematol. 2000 Mar;108(4):696–702. [PubMed] [Google Scholar]
  • David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene. 1998 May 14;16(19):2549–2556. [PubMed] [Google Scholar]
  • Jones Peter A, Baylin Stephen B. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002 Jun;3(6):415–428. [PubMed] [Google Scholar]
  • Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000 Apr;16(4):168–174. [PubMed] [Google Scholar]
  • Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999 Jan;21(1):103–107. [PubMed] [Google Scholar]
  • Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001 Oct 1;61(19):7025–7029. [PubMed] [Google Scholar]
  • Johnstone Ricky W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002 Apr;1(4):287–299. [PubMed] [Google Scholar]
  • Yan L, Yang X, Davidson NE. Role of DNA methylation and histone acetylation in steroid receptor expression in breast cancer. J Mammary Gland Biol Neoplasia. 2001 Apr;6(2):183–192. [PubMed] [Google Scholar]
  • Zhu WG, Lakshmanan RR, Beal MD, Otterson GA. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res. 2001 Feb 15;61(4):1327–1333. [PubMed] [Google Scholar]
  • Hubbert Charlotte, Guardiola Amaris, Shao Rong, Kawaguchi Yoshiharu, Ito Akihiro, Nixon Andrew, Yoshida Minoru, Wang Xiao-Fan, Yao Tso-Pang. HDAC6 is a microtubule-associated deacetylase. Nature. 2002 May 23;417(6887):455–458. [PubMed] [Google Scholar]
  • Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, Wu CW. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000 Jul 7;275(27):20436–20443. [PubMed] [Google Scholar]
  • Suenaga Mitsuhiro, Soda Hiroshi, Oka Mikio, Yamaguchi Akihiko, Nakatomi Katsumi, Shiozawa Ken, Kawabata Shigeru, Kasai Takashi, Yamada Yasuaki, Kamihira Shimeru, et al. Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int J Cancer. 2002 Feb 10;97(5):621–625. [PubMed] [Google Scholar]
  • Pelidis MA, Carducci MA, Simons JW. Cytotoxic effects of sodium phenylbutyrate on human neuroblastoma cell lines. Int J Oncol. 1998 Apr;12(4):889–893. [PubMed] [Google Scholar]
  • Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001 Dec 17;20(24):6969–6978. [PMC free article] [PubMed] [Google Scholar]
  • Della Ragione F, Criniti V, Della Pietra V, Borriello A, Oliva A, Indaco S, Yamamoto T, Zappia V. Genes modulated by histone acetylation as new effectors of butyrate activity. FEBS Lett. 2001 Jun 22;499(3):199–204. [PubMed] [Google Scholar]
  • Remiszewski Stacy W, Sambucetti Lidia C, Atadja Peter, Bair Kenneth W, Cornell Wendy D, Green Michael A, Howell Kobporn Lulu, Jung Manfred, Kwon Paul, Trogani Nancy, et al. Inhibitors of human histone deacetylase: synthesis and enzyme and cellular activity of straight chain hydroxamates. J Med Chem. 2002 Feb 14;45(4):753–757. [PubMed] [Google Scholar]
  • Lavoie R, Bouchain G, Frechette S, Woo SH, Abou-Khalil E, Leit S, Fournel M, Yan PT, Trachy-Bourget MC, Beaulieu C, et al. Design and synthesis of a novel class of histone deacetylase inhibitors. Bioorg Med Chem Lett. 2001 Nov 5;11(21):2847–2850. [PubMed] [Google Scholar]
  • Kim MS, Son MW, Kim WB, In Park Y, Moon A. Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett. 2000 Aug 31;157(1):23–30. [PubMed] [Google Scholar]
  • Sandor Victor, Bakke Susan, Robey Robert W, Kang Min H, Blagosklonny Mikhail V, Bender Jonathon, Brooks Rebecca, Piekarz Richard L, Tucker Eben, Figg William D, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res. 2002 Mar;8(3):718–728. [PubMed] [Google Scholar]
  • Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001 Dec;1(3):194–202. [PubMed] [Google Scholar]
  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 1993 Oct 25;268(30):22429–22435. [PubMed] [Google Scholar]
  • Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr. 1996;5(4-5):245–253. [PMC free article] [PubMed] [Google Scholar]
  • Mariadason JM, Corner GA, Augenlicht LH. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 2000 Aug 15;60(16):4561–4572. [PubMed] [Google Scholar]
  • Fischle Wolfgang, Dequiedt Franck, Hendzel Michael J, Guenther Matthew G, Lazar Mitchell A, Voelter Wolfgang, Verdin Eric. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002 Jan;9(1):45–57. [PubMed] [Google Scholar]
  • Gao Lin, Cueto Maria A, Asselbergs Fred, Atadja Peter. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002 Jul 12;277(28):25748–25755. [PubMed] [Google Scholar]
  • Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J. 2000 Aug 15;350(Pt 1):199–205. [PMC free article] [PubMed] [Google Scholar]
  • Galasinski Scott C, Resing Katheryn A, Goodrich James A, Ahn Natalie G. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem. 2002 May 31;277(22):19618–19626. [PubMed] [Google Scholar]
  • Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem. 2001 Sep 21;276(38):35826–35835. [PubMed] [Google Scholar]
  • Yang Wen-Ming, Tsai Shih-Chang, Wen Yu-Der, Fejer Gyorgy, Seto Edward. Functional domains of histone deacetylase-3. J Biol Chem. 2002 Mar 15;277(11):9447–9454. [PubMed] [Google Scholar]
  • Van den Wyngaert I, de Vries W, Kremer A, Neefs J, Verhasselt P, Luyten WH, Kass SU. Cloning and characterization of human histone deacetylase 8. FEBS Lett. 2000 Jul 28;478(1-2):77–83. [PubMed] [Google Scholar]
  • Bertos NR, Wang AH, Yang XJ. Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol. 2001;79(3):243–252. [PubMed] [Google Scholar]
  • Fischer Denise D, Cai Richard, Bhatia Umesh, Asselbergs Fred A M, Song Chuanzheng, Terry Robert, Trogani Nancy, Widmer Roland, Atadja Peter, Cohen Dalia. Isolation and characterization of a novel class II histone deacetylase, HDAC10. J Biol Chem. 2002 Feb 22;277(8):6656–6666. [PubMed] [Google Scholar]
  • Kao Hung-Ying, Lee Chih-Hao, Komarov Andrei, Han Chris C, Evans Ronald M. Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem. 2002 Jan 4;277(1):187–193. [PubMed] [Google Scholar]
  • Zhou X, Marks PA, Rifkind RA, Richon VM. Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10572–10577. [PMC free article] [PubMed] [Google Scholar]
  • Pflum MK, Tong JK, Lane WS, Schreiber SL. Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem. 2001 Dec 14;276(50):47733–47741. [PubMed] [Google Scholar]
  • Kao HY, Verdel A, Tsai CC, Simon C, Juguilon H, Khochbin S. Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem. 2001 Dec 14;276(50):47496–47507. [PubMed] [Google Scholar]
  • Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem. 2001 May 18;276(20):17007–17013. [PubMed] [Google Scholar]
  • Yoshida M, Furumai R, Nishiyama M, Komatsu Y, Nishino N, Horinouchi S. Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol. 2001 Aug;48 (Suppl 1):S20–S26. [PubMed] [Google Scholar]
  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999 Sep 9;401(6749):188–193. [PubMed] [Google Scholar]
  • Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990 Oct 5;265(28):17174–17179. [PubMed] [Google Scholar]
  • Marmorstein R. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure. 2001 Dec;9(12):1127–1133. [PubMed] [Google Scholar]
  • Kao HY, Downes M, Ordentlich P, Evans RM. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000 Jan 1;14(1):55–66. [PMC free article] [PubMed] [Google Scholar]
  • Li Jiwen, Lin Qiushi, Wang Weidong, Wade Paul, Wong Jiemin. Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev. 2002 Mar 15;16(6):687–692. [PMC free article] [PubMed] [Google Scholar]
  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999 Aug 1;13(15):1924–1935. [PMC free article] [PubMed] [Google Scholar]
  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998 Feb 5;391(6667):597–601. [PubMed] [Google Scholar]
  • Heinzel T, Lavinsky RM, Mullen TM, Söderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature. 1997 May 1;387(6628):43–48. [PubMed] [Google Scholar]
  • Ashburner BP, Westerheide SD, Baldwin AS., Jr The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol. 2001 Oct;21(20):7065–7077. [PMC free article] [PubMed] [Google Scholar]
  • Taplick J, Kurtev V, Kroboth K, Posch M, Lechner T, Seiser C. Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J Mol Biol. 2001 Apr 20;308(1):27–38. [PubMed] [Google Scholar]
  • Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol. 2001 Sep;21(17):5979–5991. [PMC free article] [PubMed] [Google Scholar]
  • Koipally J, Renold A, Kim J, Georgopoulos K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J. 1999 Jun 1;18(11):3090–3100. [PMC free article] [PubMed] [Google Scholar]
  • Wu X, Li H, Park EJ, Chen JD. SMRTE inhibits MEF2C transcriptional activation by targeting HDAC4 and 5 to nuclear domains. J Biol Chem. 2001 Jun 29;276(26):24177–24185. [PubMed] [Google Scholar]
  • Nair AR, Boersma LJ, Schiltz L, Chaudhry MA, Muschel RJ, Chaudry A. Paradoxical effects of trichostatin A: inhibition of NF-Y-associated histone acetyltransferase activity, phosphorylation of hGCN5 and downregulation of cyclin A and B1 mRNA. Cancer Lett. 2001 May 10;166(1):55–64. [PubMed] [Google Scholar]
  • Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol. 2001 Sep;21(18):6091–6101. [PMC free article] [PubMed] [Google Scholar]
  • Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y, Tanimoto M, Saito H. Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood. 2001 Oct 1;98(7):2116–2123. [PubMed] [Google Scholar]
  • Zhou X, Richon VM, Rifkind RA, Marks PA. Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1056–1061. [PMC free article] [PubMed] [Google Scholar]
  • Nicolas E, Ait-Si-Ali S, Trouche D. The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein. Nucleic Acids Res. 2001 Aug 1;29(15):3131–3136. [PMC free article] [PubMed] [Google Scholar]
  • Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu R, Winkler J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem. 2000 May 19;275(20):15254–15264. [PubMed] [Google Scholar]
  • McKinsey TA, Zhang CL, Olson EN. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev. 2001 Oct;11(5):497–504. [PubMed] [Google Scholar]
  • Andreucci John J, Grant Diane, Cox David M, Tomc Lyn K, Prywes Ron, Goldhamer David J, Rodrigues Natalie, Bédard Pierre-André, McDermott John C. Composition and function of AP-1 transcription complexes during muscle cell differentiation. J Biol Chem. 2002 May 10;277(19):16426–16432. [PubMed] [Google Scholar]
  • McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000 Nov 2;408(6808):106–111. [PMC free article] [PubMed] [Google Scholar]
  • Miska EA, Langley E, Wolf D, Karlsson C, Pines J, Kouzarides T. Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res. 2001 Aug 15;29(16):3439–3447. [PMC free article] [PubMed] [Google Scholar]
  • Choi SJ, Park SY, Han TH. 14-3-3tau associates with and activates the MEF2D transcription factor during muscle cell differentiation. Nucleic Acids Res. 2001 Jul 1;29(13):2836–2842. [PMC free article] [PubMed] [Google Scholar]
  • Guardiola Amaris R, Yao Tso-Pang. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem. 2002 Feb 1;277(5):3350–3356. [PubMed] [Google Scholar]
  • Tong Jenny J, Liu Jianhong, Bertos Nicholas R, Yang Xiang-Jiao. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res. 2002 Mar 1;30(5):1114–1123. [PMC free article] [PubMed] [Google Scholar]
  • Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P, Hermus MC, van Asperen R, Boon K, Voûte PA, et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science. 2001 Feb 16;291(5507):1289–1292. [PubMed] [Google Scholar]
  • Dangond F, Henriksson M, Zardo G, Caiafa P, Ekström TJ, Gray SG. Differential expression of class I HDACs: roles of cell density and cell cycle. Int J Oncol. 2001 Oct;19(4):773–777. [PubMed] [Google Scholar]
  • Dangond F, Gullans SR. Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem Biophys Res Commun. 1998 Jun 29;247(3):833–837. [PubMed] [Google Scholar]
  • Gray SG, Ekström TJ. The human histone deacetylase family. Exp Cell Res. 2001 Jan 15;262(2):75–83. [PubMed] [Google Scholar]
  • Chang Karen T, Min Kyung-Tai. Regulation of lifespan by histone deacetylase. Ageing Res Rev. 2002 Jun;1(3):313–326. [PubMed] [Google Scholar]
  • Robyr Daniel, Suka Yuko, Xenarios Ioannis, Kurdistani Siavash K, Wang Amy, Suka Noriyuki, Grunstein Michael. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell. 2002 May 17;109(4):437–446. [PubMed] [Google Scholar]
  • Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):87–92. [PMC free article] [PubMed] [Google Scholar]
  • Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene. 1999 Apr 15;18(15):2461–2470. [PubMed] [Google Scholar]
  • Krämer OH, Göttlicher M, Heinzel T. Histone deacetylase as a therapeutic target. Trends Endocrinol Metab. 2001 Sep;12(7):294–300. [PubMed] [Google Scholar]
  • Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001 Nov;13(6):477–483. [PubMed] [Google Scholar]
  • Prakash S, Foster BJ, Meyer M, Wozniak A, Heilbrun LK, Flaherty L, Zalupski M, Radulovic L, Valdivieso M, LoRusso PM. Chronic oral administration of CI-994: a phase 1 study. Invest New Drugs. 2001;19(1):1–11. [PubMed] [Google Scholar]
  • Gilbert J, Baker SD, Bowling MK, Grochow L, Figg WD, Zabelina Y, Donehower RC, Carducci MA. A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin Cancer Res. 2001 Aug;7(8):2292–2300. [PubMed] [Google Scholar]
  • Gore Steven D, Weng Li-Jun, Figg William D, Zhai Suoping, Donehower Ross C, Dover George, Grever Michael R, Griffin Constance, Grochow Louise B, Hawkins Anita, et al. Impact of prolonged infusions of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia. Clin Cancer Res. 2002 Apr;8(4):963–970. [PubMed] [Google Scholar]
  • Warrell RP, Jr, He LZ, Richon V, Calleja E, Pandolfi PP. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst. 1998 Nov 4;90(21):1621–1625. [PubMed] [Google Scholar]
  • Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16:653–699. [PubMed] [Google Scholar]
  • Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L, Kingma DM, Turner ML, Altemus R, Bates SE. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood. 2001 Nov 1;98(9):2865–2868. [PubMed] [Google Scholar]
  • Richon Victoria M, O'Brien James P. Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Clin Cancer Res. 2002 Mar;8(3):662–664. [PubMed] [Google Scholar]
  • Han JW, Ahn SH, Kim YK, Bae GU, Yoon JW, Hong S, Lee HY, Lee YW, Lee HW. Activation of p21(WAF1/Cip1) transcription through Sp1 sites by histone deacetylase inhibitor apicidin: involvement of protein kinase C. J Biol Chem. 2001 Nov 9;276(45):42084–42090. [PubMed] [Google Scholar]
  • Zhang Chun Li, McKinsey Timothy A, Olson Eric N. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol. 2002 Oct;22(20):7302–7312. [PMC free article] [PubMed] [Google Scholar]
  • Su GH, Sohn TA, Ryu B, Kern SE. A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library. Cancer Res. 2000 Jun 15;60(12):3137–3142. [PubMed] [Google Scholar]
  • Yu Xiaodan, Guo Z Sheng, Marcu Monica G, Neckers Len, Nguyen Dao M, Chen G Aaron, Schrump David S. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 2002 Apr 3;94(7):504–513. [PubMed] [Google Scholar]
  • Butler LM, Webb Y, Agus DB, Higgins B, Tolentino TR, Kutko MC, LaQuaglia MP, Drobnjak M, Cordon-Cardo C, Scher HI, et al. Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin Cancer Res. 2001 Apr;7(4):962–970. [PubMed] [Google Scholar]
  • Glick RD, Swendeman SL, Coffey DC, Rifkind RA, Marks PA, Richon VM, La Quaglia MP. Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. Cancer Res. 1999 Sep 1;59(17):4392–4399. [PubMed] [Google Scholar]
  • Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 2000 Nov 1;60(21):6068–6074. [PubMed] [Google Scholar]
  • Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res. 2001 Apr;7(4):971–976. [PubMed] [Google Scholar]
  • Nervi C, Borello U, Fazi F, Buffa V, Pelicci PG, Cossu G. Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity. Cancer Res. 2001 Feb 15;61(4):1247–1249. [PubMed] [Google Scholar]
  • Coffey DC, Kutko MC, Glick RD, Butler LM, Heller G, Rifkind RA, Marks PA, Richon VM, La Quaglia MP. The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 2001 May 1;61(9):3591–3594. [PubMed] [Google Scholar]
  • Siavoshian S, Segain JP, Kornprobst M, Bonnet C, Cherbut C, Galmiche JP, Blottière HM. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut. 2000 Apr;46(4):507–514. [PMC free article] [PubMed] [Google Scholar]
  • Coffey DC, Kutko MC, Glick RD, Swendeman SL, Butler L, Rifkind R, Marks PA, Richon VM, LaQuaglia MP. Histone deacetylase inhibitors and retinoic acids inhibit growth of human neuroblastoma in vitro. Med Pediatr Oncol. 2000 Dec;35(6):577–581. [PubMed] [Google Scholar]
  • Sun H, Taneja R. Stra13 expression is associated with growth arrest and represses transcription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4058–4063. [PMC free article] [PubMed] [Google Scholar]
  • Koyama Y, Adachi M, Sekiya M, Takekawa M, Imai K. Histone deacetylase inhibitors suppress IL-2-mediated gene expression prior to induction of apoptosis. Blood. 2000 Aug 15;96(4):1490–1495. [PubMed] [Google Scholar]
  • Hou Mi, Wang XiongBiao, Popov Nikita, Zhang Anju, Zhao Xiaoyan, Zhou Rong, Zetterberg Anders, Björkholm Magnus, Henriksson Marie, Gruber Astrid, et al. The histone deacetylase inhibitor trichostatin A derepresses the telomerase reverse transcriptase (hTERT) gene in human cells. Exp Cell Res. 2002 Mar 10;274(1):25–34. [PubMed] [Google Scholar]
  • Lavelle D, Chen YH, Hankewych M, DeSimone J. Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol. 2001 Nov;68(3):170–178. [PubMed] [Google Scholar]
  • Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4592–4597. [PMC free article] [PubMed] [Google Scholar]
  • Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3356–3361. [PMC free article] [PubMed] [Google Scholar]
  • Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000 Aug 2;92(15):1210–1216. [PubMed] [Google Scholar]
  • Woo Soon Hyung, Frechette Sylvie, Abou Khalil Elie, Bouchain Giliane, Vaisburg Arkadii, Bernstein Naomy, Moradei Oscar, Leit Silvana, Allan Martin, Fournel Marielle, et al. Structurally simple trichostatin A-like straight chain hydroxamates as potent histone deacetylase inhibitors. J Med Chem. 2002 Jun 20;45(13):2877–2885. [PubMed] [Google Scholar]
  • Vaute Olivier, Nicolas Estelle, Vandel Laurence, Trouche Didier. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res. 2002 Jan 15;30(2):475–481. [PMC free article] [PubMed] [Google Scholar]
  • Downes M, Ordentlich P, Kao HY, Alvarez JG, Evans RM. Identification of a nuclear domain with deacetylase activity. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10330–10335. [PMC free article] [PubMed] [Google Scholar]
  • Yang J, Kawai Y, Hanson RW, Arinze IJ. Sodium butyrate induces transcription from the G alpha(i2) gene promoter through multiple Sp1 sites in the promoter and by activating the MEK-ERK signal transduction pathway. J Biol Chem. 2001 Jul 13;276(28):25742–25752. [PubMed] [Google Scholar]
  • Pili R, Kruszewski MP, Hager BW, Lantz J, Carducci MA. Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Cancer Res. 2001 Feb 15;61(4):1477–1485. [PubMed] [Google Scholar]
  • Stähelin H, Trippmacher A. Cytostatic activity of chlamydocin, a rapidly inactivated cyclic tetrapeptide. Eur J Cancer. 1974 Dec;10(12):801–808. [PubMed] [Google Scholar]
  • Kitazono Masaki, Rao Vemulkonda Koneti, Robey Rob, Aikou Takashi, Bates Susan, Fojo Tito, Goldsmith Merrill E. Histone deacetylase inhibitor FR901228 enhances adenovirus infection of hematopoietic cells. Blood. 2002 Mar 15;99(6):2248–2251. [PubMed] [Google Scholar]
  • Kwon Ho Jeong, Kim Myoung Sook, Kim Min Jung, Nakajima Hidenori, Kim Kyu-Won. Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int J Cancer. 2002 Jan 20;97(3):290–296. [PubMed] [Google Scholar]
  • Seelig MH, Berger MR. Efficacy of dinaline and its methyl and acetyl derivatives against colorectal cancer in vivo and in vitro. Eur J Cancer. 1996 Oct;32A(11):1968–1976. [PubMed] [Google Scholar]
  • Burgess AJ, Pavey S, Warrener R, Hunter LJ, Piva TJ, Musgrove EA, Saunders N, Parsons PG, Gabrielli BG. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol. 2001 Oct;60(4):828–837. [PubMed] [Google Scholar]
  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10014–10019. [PMC free article] [PubMed] [Google Scholar]
  • Huang H, Reed CP, Zhang JS, Shridhar V, Wang L, Smith DI. Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res. 1999 Jun 15;59(12):2981–2988. [PubMed] [Google Scholar]
  • Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D. Functional significance of histone deacetylase diversity. Curr Opin Genet Dev. 2001 Apr;11(2):162–166. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society