Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impurity-healing interface engineering for efficient perovskite submodules

Abstract

An issue that affects the scaling-up development of perovskite photovoltaics is the marked efficiency drop when enlarging the device area, caused by the inhomogeneous distribution of defected sites1,2,3. In the narrow band gap formamidinium lead iodide (FAPbI3), the native impurities of PbI2 and δ-FAPbI3 non-perovskite could induce unfavoured non-radiative recombination, as well as inferior charge transport and extraction4,5. Here we develop an impurity-healing interface engineering strategy to address the issue in small-area solar cells and large-scale submodules. With the introduction of a functional cation, 2-(1-cyclohexenyl)ethyl ammonium, two-dimensional perovskite with high mobility is rationally constructed on FAPbI3 to horizontally cover the film surface and to vertically penetrate the grain boundaries of three-dimensional perovskites. This unique configuration not only comprehensively transforms the PbI2 and δ-FAPbI3 impurities into stable two-dimensional perovskite and realizes uniform defect passivation but also provides interconnecting channels for efficient carrier transport. As a result, the FAPbI3-based small-area (0.085 cm2) solar cells achieve a champion efficiency of more than 25.86% with a notably high fill factor of 86.16%. The fabricated submodules with an aperture area of 715.1 cm2 obtain a certified record efficiency of 22.46% with a good fill factor of 81.21%, showcasing the feasibility and effectualness of the impurity-healing interface engineering for scaling-up promotion with well-preserved photovoltaic performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impurity healing of perovskite films by CHEAI treatment.
Fig. 2: Characterization of surface properties and charge-carrier transport dynamics of films.
Fig. 3: Photovoltaic performance of small-area devices.
Fig. 4: Evaluation of film uniformity and photovoltaic performance of large-area PSMs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the paper and Supplementary Information.

References

  1. Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    ADS  CAS  Google Scholar 

  2. Bu, T. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    ADS  CAS  PubMed  Google Scholar 

  3. Yang, Y. et al. A thermotropic liquid crystal enables efficient and stable perovskite solar modules. Nat. Energy 9, 316–323 (2024).

    ADS  CAS  Google Scholar 

  4. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    ADS  CAS  PubMed  Google Scholar 

  5. Bu, T. et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 7, 528–536 (2022).

    ADS  CAS  Google Scholar 

  6. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    ADS  CAS  PubMed  Google Scholar 

  7. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    ADS  CAS  PubMed  Google Scholar 

  8. Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    ADS  CAS  PubMed  Google Scholar 

  9. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    ADS  CAS  PubMed  Google Scholar 

  10. Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells. Adv. Mater. 28, 6734–6739 (2016).

    CAS  PubMed  Google Scholar 

  11. Peng, J. et al. Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 10, 1792–1800 (2017).

    CAS  Google Scholar 

  12. Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    ADS  CAS  Google Scholar 

  13. Zhang, H., Pfeifer, L., Zakeeruddin, S. M., Chu, J. & Gratzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023).

    CAS  PubMed  Google Scholar 

  14. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536, 312–316 (2016).

    ADS  CAS  PubMed  Google Scholar 

  15. Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    ADS  CAS  Google Scholar 

  16. Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).

    ADS  CAS  Google Scholar 

  17. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    ADS  CAS  Google Scholar 

  18. Gharibzadeh, S. et al. Record open‐circuit voltage wide‐bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Google Scholar 

  19. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    ADS  CAS  Google Scholar 

  20. Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    ADS  CAS  PubMed  Google Scholar 

  21. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    ADS  CAS  PubMed  Google Scholar 

  22. Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021).

    ADS  CAS  PubMed  Google Scholar 

  23. Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

    ADS  CAS  PubMed  Google Scholar 

  24. Liu, C. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021).

    ADS  CAS  PubMed  Google Scholar 

  25. Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    ADS  CAS  Google Scholar 

  26. Wang, H., Qin, Z., Miao, Y. & Zhao, Y. Recent progress in large-area perovskite photovoltaic modules. Trans. Tianjin Univ. 28, 323–340 (2022).

    Google Scholar 

  27. Miao, Y. et al. Green solvent enabled scalable processing of perovskite solar cells with high efficiency. Nat. Sustain. 6, 1465–1473 (2023).

    Google Scholar 

  28. Yoo, J. W. et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 5, 2420–2436 (2021).

    CAS  Google Scholar 

  29. Rahil, M. et al. Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1–4) for optoelectronic applications. Sci. Rep. 12, 2176 (2022).

    ADS  CAS  PubMed  Google Scholar 

  30. Huang, Z. et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).

    ADS  CAS  PubMed  Google Scholar 

  31. Boeije, Y. et al. Tailoring interlayer charge transfer dynamics in 2D perovskites with electroactive spacer molecules. J. Am. Chem. Soc. 145, 21330–21343 (2023).

    CAS  PubMed  Google Scholar 

  32. Zhang, F. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    ADS  CAS  PubMed  Google Scholar 

  33. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    ADS  CAS  PubMed  Google Scholar 

  34. Guo, J. et al. Ultralong carrier lifetime exceeding 20 µs in lead halide perovskite film enable efficient solar cells. Adv. Mater. 35, 2212126 (2023).

    CAS  Google Scholar 

  35. Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).

    ADS  CAS  PubMed  Google Scholar 

  36. Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).

    ADS  CAS  Google Scholar 

  37. Staub, F. et al. Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6, 044017 (2016).

    ADS  Google Scholar 

  38. Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    CAS  Google Scholar 

  39. Ding, Y. et al. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022).

    ADS  CAS  PubMed  Google Scholar 

  40. Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    ADS  CAS  Google Scholar 

  41. Ma, K. et al. Holistic energy landscape management in 2D/3D heterojunction via molecular engineering for efficient perovskite solar cells. Sci. Adv. 9, eadg0032 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022).

    ADS  CAS  PubMed  Google Scholar 

  43. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    ADS  CAS  PubMed  Google Scholar 

  44. Yang, W. et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv. Mater. 35, 2302071 (2023).

    CAS  Google Scholar 

  45. Metcalf, I. et al. Synergy of 3D and 2D perovskites for durable, efficient solar cells and beyond. Chem. Rev. 123, 9565–9652 (2023).

    CAS  PubMed  Google Scholar 

  46. Zhao, D. et al. Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)4AgBiBr8 nanosheets. Adv. Mater. 34, 2204661 (2022).

    CAS  Google Scholar 

  47. Mahmud, M. A. et al. Origin of efficiency and stability enhancement in high‐performing mixed dimensional 2D‐3D perovskite solar cells: a review. Adv. Funct. Mater. 32, 2009164 (2021).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, grant nos. 22025505, 22220102002, 52203334 and 22209111), the Natural Science Foundation of Shanghai (grant nos. 23ZR1432300 and 23ZR1428000), the Shanghai Pujiang Program (grant no. 22PJ1404700) and the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (grant no. SL2022ZD105). We thank the Shanghai Synchrotron Radiation Facility for the assistance on GIWAXS measurements. We also thank the Instrumental Analysis Centers of Shanghai Jiao Tong University and the School of Environmental Science and Engineering for assistance with material characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., C.O. and Y.M. designed and directed the research. H.W., S.S. and Y.C. carried out the fabrication and characterization of PSCs and PSMs. M.R. prepared devices and samples for characterizations and measured XPS/UPS spectra. S.W. assisted with the PL mapping, GIWAXS and HR-STEM measurements. Y.W. and C.Z. participated in SEM, AFM, TRPL and TPC/TPV characterizations and data analysis. Y.Z., C.O., Y.M., Y.C. and H.W. wrote the paper with inputs from all authors.

Corresponding authors

Correspondence to Yanfeng Miao, Chuying Ouyang or Yixin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Mohammad Khaja Nazeeruddin, Feng Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–37, Supplementary Table 1, Supplementary Notes 1–4 and Supplementary References.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Su, S., Chen, Y. et al. Impurity-healing interface engineering for efficient perovskite submodules. Nature 634, 1091–1095 (2024). https://doi.org/10.1038/s41586-024-08073-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08073-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing