Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanical state transitions in the regulation of tissue form and function

Abstract

From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Definition and biological basis of tissue mechanical properties and state transitions.
Fig. 2: Cellular machineries and mechanisms that determine cell and tissue mechanical states.
Fig. 3: Examples of tissue state transitions in development, homeostasis, disease and ageing.
Fig. 4: Strategies for dissipating mechanical stress and fluctuations at the tissue scale.

Similar content being viewed by others

References

  1. Kim, S., Pochitaloff, M., Stooke-Vaughan, G. A. & Campas, O. Embryonic tissues as active foams. Nat. Phys. 17, 859–866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Tetley, R. J. & Mao, Y. The same but different: cell intercalation as a driver of tissue deformation and fluidity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170328 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Founounou, N. et al. Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nat. Commun. 12, 6974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, T., Saw, T. B., Mege, R. M. & Ladoux, B. Mechanical forces in cell monolayers. J. Cell Sci. 131, jcs218156 (2018).

    Article  PubMed  Google Scholar 

  6. Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Rossen, N. S., Tarp, J. M., Mathiesen, J., Jensen, M. H. & Oddershede, L. B. Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun. 5, 5720 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Özkaya, N., Nordin, M., Goldsheyder, D. & Leger, D. (eds) Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation 221–236 (Springer International Publishing, 2012).

  10. Snoeijer, J. H., Pandey, A., Herrada, M. A. & Eggers, J. The relationship between viscoelasticity and elasticity. Proc. Math. Phys. Eng. Sci. 476, 20200419 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cacopardo, L. & Ahluwalia, A. Engineering and monitoring 3D cell constructs with time-evolving viscoelasticity for the study of liver fibrosis in vitro. Bioengineering 8, 106 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Clement, R., Dehapiot, B., Collinet, C., Lecuit, T. & Lenne, P. F. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis. Curr. Biol. 27, 3132–3142.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Duda, M. et al. Polarization of myosin II refines tissue material properties to buffer mechanical stress. Dev. Cell 48, 245–260.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, A. S. et al. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci. Rep. 6, 33919 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Teranishi, A. et al. Epithelial folding irreversibility is controlled by elastoplastic transition via mechanosensitive actin bracket formation. Preprint at bioRxiv https://doi.org/10.1101/2023.12.19.572470 (2024).

    Article  Google Scholar 

  16. Zhijie, W., Mark, J. G. & Naomi, C. C. In Viscoelastic and Viscoplastic Materials (ed. Mohamed Fathy, E.-A.) (IntechOpen, 2016).

  17. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).

    Article  CAS  Google Scholar 

  18. Lawson-Keister, E. & Manning, M. L. Jamming and arrest of cell motion in biological tissues. Curr. Opin. Cell Biol. 72, 146–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Atia, L., Fredberg, J. J., Gov, N. S. & Pegoraro, A. F. Are cell jamming and unjamming essential in tissue development? Cell Dev. 168, 203727 (2021).

    Article  CAS  Google Scholar 

  20. Bocanegra-Moreno, L., Singh, A., Hannezo, E., Zagorski, M. & Kicheva, A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nat. Phys. 19, 1050–1058 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl Acad. Sci. USA 112, 15314–15319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park, J. A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tetley, R. J. et al. Tissue fluidity promotes epithelial wound healing. Nat. Phys. 15, 1195–1203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campàs, O., Noordstra, I. & Yap, A. S. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat. Rev. Mol. Cell Biol. 25, 252–269 (2023).

    Article  PubMed  Google Scholar 

  26. Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kasza, K. E. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Lappalainen, P., Kotila, T., Jegou, A. & Romet-Lemonne, G. Biochemical and mechanical regulation of actin dynamics. Nat. Rev. Mol. Cell Biol. 23, 836–852 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Curran, S. et al. Myosin II controls junction fluctuations to guide epithelial tissue ordering. Dev. Cell 43, 480–492.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamamoto, T., Sussman, D. M., Shibata, T. & Manning, M. L. Non-monotonic fluidization generated by fluctuating edge tensions in confluent tissues. Soft Matter 18, 2168–2175 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Matis, M. The mechanical role of microtubules in tissue remodeling. Bioessays 42, e1900244 (2020).

    Article  PubMed  Google Scholar 

  34. Takeda, M., Sami, M. M. & Wang, Y. C. A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat. Cell Biol. 20, 36–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Booth, A. J. R., Blanchard, G. B., Adams, R. J. & Roper, K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev. Cell 29, 562–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Enomoto, T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct. Funct. 21, 317–326 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, B. P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Roper, K. Microtubules enter centre stage for morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colin, L. et al. Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts. Proc. Natl Acad. Sci. USA 117, 32731–32738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Durand-Smet, P., Spelman, T. A., Meyerowitz, E. M. & Jonsson, H. Cytoskeletal organization in isolated plant cells under geometry control. Proc. Natl Acad. Sci. USA 117, 17399–17408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van der Vaart, B., Akhmanova, A. & Straube, A. Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007–1013 (2009).

    Article  PubMed  Google Scholar 

  44. D’Angelo, A., Dierkes, K., Carolis, C., Salbreux, G. & Solon, J. In vivo force application reveals a fast tissue softening and external friction increase during early embryogenesis. Curr. Biol. 29, 1564–1571.e6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kechagia, Z. et al. The laminin-keratin link shields the nucleus from mechanical deformation and signalling. Nat. Mater. 22, 1409–1420 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seltmann, K., Fritsch, A. W., Kas, J. A. & Magin, T. M. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc. Natl Acad. Sci. USA 110, 18507–18512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bergert, M. et al. Cell surface mechanics gate embryonic stem cell differentiation. Cell Stem Cell 28, 209–216.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Belly, H. et al. Membrane tension gates ERK-mediated regulation of pluripotent cell fate. Cell Stem Cell 28, 273–284.e6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yanagida, A. et al. Cell surface fluctuations regulate early embryonic lineage sorting. Cell 185, 777–793.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hurst, S., Vos, B. E., Brandt, M. & Betz, T. Intracellular softening and fluidification reveals a mechanical switch of cytoskeletal material contributions during division. Nat. Phys. 17, 1270–1276 (2021).

    Article  CAS  Google Scholar 

  51. Molines, A. T. et al. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Dev. Cell 57, 466–479.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Najafi, J., Dmitrieff, S. & Minc, N. Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface. Proc. Natl Acad. Sci. USA 120, e2216839120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grosser, S. et al. Cell and nucleus shape as an indicator of tissue fluidity in carcinoma. Phys. Rev. X 11, 011033 (2021).

    CAS  Google Scholar 

  54. Kim, S., Amini, R. & Campàs, O. A nuclear jamming transition in vertebrate organogenesis. Preprint at bioRxiv https://doi.org/10.1101/2022.07.31.502244 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baye, L. M. & Link, B. A. Nuclear migration during retinal development. Brain Res. 1192, 29–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Garcia, M. A., Nelson, W. J. & Chavez, N. Cell-cell junctions organize structural and signaling networks. Cold Spring Harb. Perspect. Biol. 10, a029181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ladoux, B., Nelson, W. J., Yan, J. & Mege, R. M. The mechanotransduction machinery at work at adherens junctions. Integr. Biol. 7, 1109–1119 (2015).

    Article  CAS  Google Scholar 

  58. Lecuit, T. & Yap, A. S. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat. Cell Biol. 17, 533–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Maitre, J. L. & Heisenberg, C. P. Three functions of cadherins in cell adhesion. Curr. Biol. 23, R626–R633 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schotz, E. M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2, 42–56 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krieg, M. et al. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Maitre, J. L. et al. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338, 253–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Sahu, P. et al. Small-scale demixing in confluent biological tissues. Soft Matter 16, 3325–3337 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Rubsam, M. et al. Adherens junctions and desmosomes coordinate mechanics and signaling to orchestrate tissue morphogenesis and function: an evolutionary perspective. Cold Spring Harb. Perspect. Biol. 10, a029207 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Heisenberg, C. P. & Bellaiche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Tsai, T. Y., Garner, R. M. & Megason, S. G. Adhesion-based self-organization in tissue patterning. Annu. Rev. Cell Dev. Biol. 38, 349–374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wickstrom, S. A., Radovanac, K. & Fassler, R. Genetic analyses of integrin signaling. Cold Spring Harb. Perspect. Biol. 3, a005116 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Legate, K. R., Wickstrom, S. A. & Fassler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23, 397–418 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Walma, D. A. C. & Yamada, K. M. The extracellular matrix in development. Development 147, dev175596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keeley, D. P. & Sherwood, D. R. Tissue linkage through adjoining basement membranes: the long and the short term of it. Matrix Biol. 75-76, 58–71 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Lawson, C. D. & Burridge, K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5, e27958 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tlili, S. et al. Shaping the zebrafish myotome by intertissue friction and active stress. Proc. Natl Acad. Sci. USA 116, 25430–25439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Talia, S. & Vergassola, M. Waves in embryonic development. Annu. Rev. Biophys. 51, 327–353 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ng, M. R., Besser, A., Brugge, J. S. & Danuser, G. Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. eLife 3, e03282 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Peyret, G. et al. Sustained oscillations of epithelial cell sheets. Biophys. J. 117, 464–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ruppel, A. et al. Force propagation between epithelial cells depends on active coupling and mechano-structural polarization. eLife 12, e83588 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nat. Phys. 8, 628–634 (2012).

    Article  CAS  Google Scholar 

  80. Abreu-Blanco, M. T., Verboon, J. M., Liu, R., Watts, J. J. & Parkhurst, S. M. Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string. J. Cell Sci. 125, 5984–5997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brock, J., Midwinter, K., Lewis, J. & Martin, P. Healing of incisional wounds in the embryonic chick wing bud: characterization of the actin purse-string and demonstration of a requirement for Rho activation. J. Cell Biol. 135, 1097–1107 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Davidson, L. A., Hoffstrom, B. G., Keller, R. & DeSimone, D. W. Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin α5β1, fibronectin, and tissue geometry. Dev. Biol. 242, 109–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Fernandez-Gonzalez, R. & Zallen, J. A. Wounded cells drive rapid epidermal repair in the early Drosophila embryo. Mol. Biol. Cell 24, 3227–3237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kiehart, D. P., Galbraith, C. G., Edwards, K. A., Rickoll, W. L. & Montague, R. A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martin, P. & Lewis, J. Actin cables and epidermal movement in embryonic wound healing. Nature 360, 179–183 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Peralta, X. G. et al. Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys. J. 92, 2583–2596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wood, W. et al. Wound healing recapitulates morphogenesis in Drosophila embryos. Nat. Cell Biol. 4, 907–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, S., Teng, X., Toyama, Y. & Saunders, T. E. Periodic oscillations of myosin-II mechanically proofread cell-cell connections to ensure robust formation of the cardiac vessel. Curr. Biol. 30, 3364–3377.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Nishimura, T. & Takeichi, M. Remodeling of the adherens junctions during morphogenesis. Curr. Top. Dev. Biol. 89, 33–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Ilina, O. et al. Cell-cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iyer, K. V., Piscitello-Gomez, R., Paijmans, J., Julicher, F. & Eaton, S. Epithelial viscoelasticity is regulated by mechanosensitive E-cadherin turnover. Curr. Biol. 29, 578–591.e575 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S. & Julicher, F. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Chen, D. Y., Crest, J., Streichan, S. J. & Bilder, D. Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation. Nat. Commun. 10, 3339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Harunaga, J. S., Doyle, A. D. & Yamada, K. M. Local and global dynamics of the basement membrane during branching morphogenesis require protease activity and actomyosin contractility. Dev. Biol. 394, 197–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sui, L. et al. Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nat. Commun. 9, 4620 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vahey, M. D. & Fletcher, D. A. The biology of boundary conditions: cellular reconstitution in one, two, and three dimensions. Curr. Opin. Cell Biol. 26, 60–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Thery, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123, 4201–4213 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Amack, J. D. & Manning, M. L. Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting. Science 338, 212–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Atia, L. et al. Geometric constraints during epithelial jamming. Nat. Phys. 14, 613–620 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. Energy barriers and cell migration in densely packed tissues. Soft Matter 10, 1885–1890 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Keys, A. S., Abate, A. R., Glotzer, S. C. & Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 3, 260–264 (2007).

    Article  CAS  Google Scholar 

  102. Petridou, N. I., Corominas-Murtra, B., Heisenberg, C. P. & Hannezo, E. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell 184, 1914–1928.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ranft, J. et al. Fluidization of tissues by cell division and apoptosis. Proc. Natl Acad. Sci. USA 107, 20863–20868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brandstatter, T. et al. Curvature induces active velocity waves in rotating spherical tissues. Nat. Commun. 14, 1643 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Glentis, A. et al. The emergence of spontaneous coordinated epithelial rotation on cylindrical curved surfaces. Sci. Adv. 8, eabn5406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Marzio, M., Das, A., Fredberg, J. J. & Bi, D. Epithelial layer fluidization by curvature-induced unjamming. Preprint at https://doi.org/10.48550/arXiv.2305.12667 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Werner, M., Kurniawan, N. A., Korus, G., Bouten, C. V. C. & Petersen, A. Mesoscale substrate curvature overrules nanoscale contact guidance to direct bone marrow stromal cell migration. J. R. Soc. Interface 15, 20180162 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pinheiro, D., Kardos, R., Hannezo, É. & Heisenberg, C.-P. Morphogen gradient orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. Nat. Phys. 18, 1482–1493 (2022).

    Article  CAS  Google Scholar 

  109. Saadaoui, M., Rocancourt, D., Roussel, J., Corson, F. & Gros, J. A tensile ring drives tissue flows to shape the gastrulating amniote embryo. Science 367, 453–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Petridou, N. I., Grigolon, S., Salbreux, G., Hannezo, E. & Heisenberg, C. P. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nat. Cell Biol. 21, 169–178 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jain, A. et al. Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation. Nat. Commun. 11, 5604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Banavar, S. P. et al. Mechanical control of tissue shape and morphogenetic flows during vertebrate body axis elongation. Sci. Rep. 11, 8591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Collinet, C. & Lecuit, T. Programmed and self-organized flow of information during morphogenesis. Nat. Rev. Mol. Cell Biol. 22, 245–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Nelson, C. M. Choreographing tissue morphogenesis. Semin. Cell Dev. Biol. 55, 79 (2016).

    Article  PubMed  Google Scholar 

  116. Durel, J. F. & Nerurkar, N. L. Mechanobiology of vertebrate gut morphogenesis. Curr. Opin. Genet. Dev. 63, 45–52 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miller, S. A. et al. Domains of differential cell proliferation suggest hinged folding in avian gut endoderm. Dev. Dyn. 216, 398–410 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Savin, T. et al. On the growth and form of the gut. Nature 476, 57–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hozumi, S. et al. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 440, 798–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Shyer, A. E. et al. Villification: how the gut gets its villi. Science 342, 212–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Goriely, A. & Vandiver, R. On the mechanical stability of growing arteries. IMA J. Appl. Math. 75, 549–570 (2010).

    Article  Google Scholar 

  122. Kücken, M. & Newell, A. C. Fingerprint formation. J. Theor. Biol. 235, 71–83 (2005).

    Article  PubMed  Google Scholar 

  123. Lambert, R. K., Codd, S. L., Alley, M. R. & Pack, R. J. Physical determinants of bronchial mucosal folding. J. Appl. Physiol. 77, 1206–1216 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Richman, D. P., Stewart, R. M., Hutchinson, J. W. & Caviness, V. S. Jr. Mechanical model of brain convolutional development. Science 189, 18–21 (1975).

    Article  CAS  PubMed  Google Scholar 

  125. Menshykau, D. et al. Image-based modeling of kidney branching morphogenesis reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11 feedback. Nat. Commun. 10, 239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Walton, K. D. et al. Villification in the mouse: Bmp signals control intestinal villus patterning. Development 143, 427–436 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Landge, A. N., Jordan, B. M., Diego, X. & Muller, P. Pattern formation mechanisms of self-organizing reaction-diffusion systems. Dev. Biol. 460, 2–11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lawton, A. K. et al. Cerebellar folding is initiated by mechanical constraints on a fluid-like layer without a cellular pre-pattern. eLife 8, e45019 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Engstrom, T. A., Zhang, T., Lawton, A. K., Joyner, A. L. & Schwarz, J. M. Buckling without bending: a new paradigm in morphogenesis. Phys. Rev. X 8, 041053 (2018).

    CAS  PubMed  Google Scholar 

  130. Spurlin, J. W. et al. Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development 146, dev175257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Green, J. B. & Sharpe, J. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142, 1203–1211 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Schweisguth, F. & Corson, F. Self-organization in pattern formation. Dev. Cell 49, 659–677 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Tozluoglu, M. et al. Planar differential growth rates initiate precise fold positions in complex epithelia. Dev. Cell 51, 299–312.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Glover, J. D. et al. Hierarchical patterning modes orchestrate hair follicle morphogenesis. PLoS Biol. 15, e2002117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ho, W. K. W. et al. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol. 17, e3000132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Shyer, A. E. et al. Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science 357, 811–815 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Villeneuve, C. et al. Mechanical forces across compartments coordinate cell shape and fate transitions to generate tissue architecture. Nat. Cell Biol. 26, 207–218 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. O’Brien, L. E. Tissue homeostasis and non-homeostasis: from cell life cycles to organ states. Annu. Rev. Cell Dev. Biol. 38, 395–418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tai, K., Cockburn, K. & Greco, V. Flexibility sustains epithelial tissue homeostasis. Curr. Opin. Cell Biol. 60, 84–91 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Gibson, M. C., Patel, A. B., Nagpal, R. & Perrimon, N. The emergence of geometric order in proliferating metazoan epithelia. Nature 442, 1038–1041 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. De, R., Zemel, A. & Safran, S. A. Do cells sense stress or strain? Measurement of cellular orientation can provide a clue. Biophys. J. 94, L29–L31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Obbink-Huizer, C. et al. Computational model predicts cell orientation in response to a range of mechanical stimuli. Biomech. Model. Mechanobiol. 13, 227–236 (2014).

    Article  PubMed  Google Scholar 

  145. Blanchard, G. B. et al. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. Nat. Methods 6, 458–464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen, K. et al. Role of boundary conditions in determining cell alignment in response to stretch. Proc. Natl Acad. Sci. USA 115, 986–991 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A. & Shibata, M. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12, 533–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Loza, A. J. et al. Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium. Mol. Biol. Cell 27, 3459–3470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Özkaya, N., Leger, D., Goldsheyder, D. & Nordin, M. (eds) Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation 361–387 (Springer International Publishing, 2017).

  152. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Cheng, G., Tse, J., Jain, R. K. & Munn, L. L. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS One 4, e4632 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ernest, N. J., Habela, C. W. & Sontheimer, H. Cytoplasmic condensation is both necessary and sufficient to induce apoptotic cell death. J. Cell Sci. 121, 290–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Matoz-Fernandez, D. A., Agoritsas, E., Barrat, J.-L., Bertin, E. & Martens, K. Nonlinear rheology in a model biological tissue. Phys. Rev. Lett. 118, 158105 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Angelini, T. E. et al. Glass-like dynamics of collective cell migration. Proc. Natl Acad. Sci. USA 108, 4714–4719 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Science 141, 401–408 (1963).

    Article  CAS  PubMed  Google Scholar 

  160. Steinberg, M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173, 395–434 (1970).

    Article  CAS  PubMed  Google Scholar 

  161. Arboleda-Estudillo, Y. et al. Movement directionality in collective migration of germ layer progenitors. Curr. Biol. 20, 161–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Ninomiya, H. et al. Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J. Cell Sci. 125, 1877–1883 (2012).

    CAS  PubMed  Google Scholar 

  163. Hervieux, N. et al. Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility. Curr. Biol. 27, 3468–3479.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Perez-Gonzalez, C. et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23, 745–757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Krndija, D. et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365, 705–710 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Guiu, J. et al. Tracing the origin of adult intestinal stem cells. Nature 570, 107–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sumigray, K. D., Terwilliger, M. & Lechler, T. Morphogenesis and compartmentalization of the intestinal crypt. Dev. Cell 45, 183–197.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Blanpain, C. & Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 22, 339–373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Biggs, L. C., Kim, C. S., Miroshnikova, Y. A. & Wickström, S. A. Mechanical forces in the skin: roles in tissue architecture, stability, and function. J. Invest. Dermatol. 140, 284–290 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Devany, J., Sussman, D. M., Yamamoto, T., Manning, M. L. & Gardel, M. L. Cell cycle-dependent active stress drives epithelia remodeling. Proc. Natl Acad. Sci. USA 118, e1917853118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, H., Zheng, Y., Han, Y. L., Cai, S. & Guo, M. Nonlinear elasticity of biological basement membrane revealed by rapid inflation and deflation. Proc. Natl Acad. Sci. USA 118, e2022422118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bhattacharya, S. et al. The biophysical property of the limbal niche maintains stemness through YAP. Cell Death Differ. 30, 1601–1614 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Eberwein, P., Nohava, J., Schlunck, G. & Swain, M. Nanoindentation derived mechanical properties of the corneoscleral rim of the human eye. Key Eng. Mater. 606, 117–120 (2014).

    Article  Google Scholar 

  174. Driscoll, T. P., Cosgrove, B. D., Heo, S. J., Shurden, Z. E. & Mauck, R. L. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108, 2783–2793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dupont, S. & Wickstrom, S. A. Mechanical regulation of chromatin and transcription. Nat. Rev. Genet. 23, 624–643 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Eliazer, S. et al. Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells. Cell Stem Cell 25, 654–665.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gilbert, P. M. et al. HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. J. Clin. Invest. 120, 1535–1550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Huerta-López, C. et al. Cell response to extracellular matrix energy dissipation outweighs rigidity sensing. Preprint at bioRxiv https://doi.org/10.1101/2022.11.16.516826 (2022).

    Article  Google Scholar 

  179. Ladoux, B. & Mege, R. M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18, 743–757 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Mosaffa, P., Tetley, R. J., Rodriguez-Ferran, A., Mao, Y. & Munoz, J. J. Junctional and cytoplasmic contributions in wound healing. J. R. Soc. Interface 17, 20200264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hosseini, M., Brown, J., Khosrotehrani, K., Bayat, A. & Shafiee, A. Skin biomechanics: a potential therapeutic intervention target to reduce scarring. Burn. Trauma 10, tkac036 (2022).

    Article  Google Scholar 

  182. Gurtner, G. C. et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann. Surg. 254, 217–225 (2011).

    Article  PubMed  Google Scholar 

  183. Erickson, J. R. & Echeverri, K. Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev. Biol. 433, 144–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Guzman-Herrera, A. & Mao, Y. Polarity during tissue repair, a multiscale problem. Curr. Opin. Cell Biol. 62, 31–36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Aragona, M. et al. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat. Commun. 8, 14684 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Lisse, T. S., King, B. L. & Rieger, S. Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: implications toward conservation, migration and wound healing. Sci. Rep. 6, 20328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Park, S. et al. Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat. Cell Biol. 19, 155–163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Richardson, R. & Hammerschmidt, M. The role of Rho kinase (Rock) in re-epithelialization of adult zebrafish skin wounds. Small GTPases 9, 230–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Richardson, R. et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development 143, 2077–2088 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Rezvani, O. et al. A randomized, double-blind, placebo-controlled trial to determine the effects of topical insulin on wound healing. Ostomy Wound Manag. 55, 22–28 (2009).

    Google Scholar 

  191. Contreras, E. G., Gaete, M., Sanchez, N., Carrasco, H. & Larrain, J. Early requirement of hyaluronan for tail regeneration in Xenopus tadpoles. Development 136, 2987–2996 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Fukazawa, T., Naora, Y., Kunieda, T. & Kubo, T. Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development 136, 2323–2327 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Chen, L. et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204–7218 (2018).

    Article  PubMed  Google Scholar 

  194. Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA 109, 10891–10896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Brugues, A. et al. Forces driving epithelial wound healing. Nat. Phys. 10, 683–690 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kamran, Z. et al. In vivo imaging of epithelial wound healing in the cnidarian Clytia hemisphaerica demonstrates early evolution of purse string and cell crawling closure mechanisms. BMC Dev. Biol. 17, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bement, W. M., Forscher, P. & Mooseker, M. S. A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J. Cell Biol. 121, 565–578 (1993).

    Article  CAS  PubMed  Google Scholar 

  198. Danjo, Y. & Gipson, I. K. Actin ‘purse string’ filaments are anchored by E-cadherin-mediated adherens junctions at the leading edge of the epithelial wound, providing coordinated cell movement. J. Cell Sci. 111, 3323–3332 (1998).

    Article  CAS  PubMed  Google Scholar 

  199. Schultz, G. S., Davidson, J. M., Kirsner, R. S., Bornstein, P. & Herman, I. M. Dynamic reciprocity in the wound microenvironment. Wound Repair. Regen. 19, 134–148 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Shellard, A. & Mayor, R. Collective durotaxis along a self-generated stiffness gradient in vivo. Nature 600, 690–694 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Ng, M. R., Besser, A., Danuser, G. & Brugge, J. S. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199, 545–563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sonam, S. et al. Mechanical stress driven by rigidity sensing governs epithelial stability. Nat. Phys. 19, 132–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. Yun, M. H. Changes in regenerative capacity through lifespan. Int. J. Mol. Sci. 16, 25392–25432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Larson, B. J., Longaker, M. T. & Lorenz, H. P. Scarless fetal wound healing: a basic science review. Plast. Reconstr. Surg. 126, 1172–1180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Moore, A. L. et al. Scarless wound healing: transitioning from fetal research to regenerative healing. Wiley Interdiscip. Rev. Dev. Biol. 7, https://doi.org/10.1002/wdev.309 (2018).

  206. Leung, A., Crombleholme, T. M. & Keswani, S. G. Fetal wound healing: implications for minimal scar formation. Curr. Opin. Pediatr. 24, 371–378 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Fan, C. et al. Age-related alterations of hyaluronan and collagen in extracellular matrix of the muscle spindles. J. Clin. Med. 11, 86 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Ge, Y. et al. The aging skin microenvironment dictates stem cell behavior. Proc. Natl Acad. Sci. USA 117, 5339–5350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Koester, J. et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat. Cell Biol. 23, 771–781 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Li, M. et al. Time-resolved extracellular matrix atlas of the developing human skin dermis. Front. Cell Dev. Biol. 9, 783456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Martin, P. & Nunan, R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 173, 370–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Karsdal, M. A. et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G807–G830 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Liu, M., Tolg, C. & Turley, E. Dissecting the dual nature of hyaluronan in the tumor microenvironment. Front. Immunol. 10, 947 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Heidelbaugh, J. J. & Bruderly, M. Cirrhosis and chronic liver failure: part I. Diagnosis and evaluation. Am. Fam. Physician 74, 756–762 (2006).

    PubMed  Google Scholar 

  218. Arriazu, E. et al. Extracellular matrix and liver disease. Antioxid. Redox Signal. 21, 1078–1097 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Pinter, M., Trauner, M., Peck-Radosavljevic, M. & Sieghart, W. Cancer and liver cirrhosis: implications on prognosis and management. ESMO Open 1, e000042 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Metcalf, K. J., Alazzeh, A., Werb, Z. & Weaver, V. M. Leveraging microenvironmental synthetic lethalities to treat cancer. J. Clin. Invest. 131, e143765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Pfeifer, C. R., Alvey, C. M., Irianto, J. & Discher, D. E. Genome variation across cancers scales with tissue stiffness — an invasion-mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2, 103–114 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Wullkopf, L. et al. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell 29, 2378–2385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rice, A. J. et al. Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Swaminathan, V. et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 924 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Matthews, H. K. et al. Oncogenic signaling alters cell shape and mechanics to facilitate cell division under confinement. Dev. Cell 52, 563–573.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Nyga, A., Ganguli, S., Matthews, H. K. & Baum, B. The role of RAS oncogenes in controlling epithelial mechanics. Trends Cell Biol. 33, 60–69 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Palamidessi, A. et al. Publisher correction: unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat. Mater. 21, 1448 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Mitchel, J. A. et al. In primary airway epithelial cells, the unjamming transition is distinct from the epithelial-to-mesenchymal transition. Nat. Commun. 11, 5053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Stancil, I. T. et al. Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional. Nat. Commun. 12, 4566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Ito, J. T. et al. Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cells 8, 342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Martin, E. et al. Arp2/3-dependent mechanical control of morphogenetic robustness in an inherently challenging environment. Dev. Cell 56, 687–701.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Villars, A., Letort, G., Valon, L. & Levayer, R. DeXtrusion: automatic recognition of epithelial cell extrusion through machine learning in vivo. Development 150, dev201747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Tsinman, T. K. et al. Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee. J. Orthop. Res. 41, 2305–2314 (2023).

    Article  CAS  PubMed  Google Scholar 

  239. Haase, K. & Pelling, A. E. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 12, 20140970 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Prevedel, R., Diz-Munoz, A., Ruocco, G. & Antonacci, G. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods 16, 969–977 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  242. Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Bush, J. & Maruthamuthu, V. In situ determination of exerted forces in magnetic pulling cytometry. AIP Adv. 9, 035221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  245. Bufi, N., Durand-Smet, P. & Asnacios, A. Single-cell mechanics: the parallel plates technique. Methods Cell Biol. 125, 187–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  246. Kong, W. et al. Experimental validation of force inference in epithelia from cell to tissue scale. Sci. Rep. 9, 14647 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Catala-Castro, F., Schaffer, E. & Krieg, M. Exploring cell and tissue mechanics with optical tweezers. J. Cell Sci. 135, jcs259355 (2022).

    Article  PubMed  Google Scholar 

  248. Iskratsch, T., Wolfenson, H. & Sheetz, M. P. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  250. Mammoto, A., Mammoto, T. & Ingber, D. E. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061–3073 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Hannezo, E. & Heisenberg, C. P. Mechanochemical feedback loops in development and disease. Cell 178, 12–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  253. Aoki, K. et al. Propagating wave of ERK activation orients collective cell migration. Dev. Cell 43, 305–317.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Boocock, D., Hirashima, T. & Hannezo, E. Interplay between mechanochemical patterning and glassy dynamics in cellular monolayers. PRX Life 1, 013001 (2023).

    Article  Google Scholar 

  255. Hino, N. et al. ERK-mediated mechanochemical waves direct collective cell polarization. Dev. Cell 53, 646–660.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  256. Guilak, F., Butler, D. L., Goldstein, S. A. & Baaijens, F. P. Biomechanics and mechanobiology in functional tissue engineering. J. Biomech. 47, 1933–1940 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Humphrey, J. D. & Schwartz, M. A. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu. Rev. Biomed. Eng. 23, 1–27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Tschumperlin, D. J., Boudreault, F. & Liu, F. Recent advances and new opportunities in lung mechanobiology. J. Biomech. 43, 99–107 (2010).

    Article  PubMed  Google Scholar 

  259. Chugh, M., Munjal, A. & Megason, S. G. Hydrostatic pressure as a driver of cell and tissue morphogenesis. Semin. Cell Dev. Biol. 131, 134–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Romain Levayer, Rashmi Priya and Yekaterina Miroshnikova for providing thoughtful advice on the manuscript. They apologize to colleagues whose work they have inadvertently failed to cite. Y.M. was supported by a Medical Research Council award MR/W027437/1, a Lister Institute Research Prize and EMBO Young Investigator Programme, and would like to thank Lin Jing Ying Lin Quan for discussions prior to writing this manuscript. The Wickström lab is supported by the Academy of Finland and Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Yanlan Mao or Sara A. Wickström.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Timothy Saunders and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Blastocyst

A fluid-filled sphere of cells that forms during the first 5–9 days of mammalian embryonic development and generates all embryonic and extra-embryonic tissues.

Blastoderm

The single layer of embryonic epithelial tissue that makes up the blastula, the early embryonic stage characterized by a hollow, spherical structure, with a fluid-filled cavity called the blastocoel.

Cell extrusion

This term describes the controlled elimination or removal of cells from an epithelium while maintaining epithelial barrier integrity.

Cortical tension

This describes the sustained contraction of the cortical cytoskeleton. It is largely but not exclusively based on actomyosin contraction and depends on the density of the cortex as well as on its structure and composition.

Emergent properties

New property or behaviour of a system that results from the combination of or interaction between two or more different components or processes, none of which displayed the behaviour individually.

Friction

A force that resists motion when the surface of one object (such as a cell) comes into contact with the surface of another object (for example, a cell or extracellular matrix). In cells, this force is typically generated by adhesion molecules.

Interfacial tension

The tension at the boundary between two objects such as a junctional interface between two cells.

Presomitic mesoderm

This is a region of the embryo also known as paraxial or somitic mesoderm that flanks the neural tube and gives rise to somites.

Shear stress

A stress that is applied parallel or tangential to the surface of a material, as opposed to stress that is applied perpendicularly.

Tensile forces

A force that has two components — tensile stress and tensile strain — that act on a material to stretch it while it is under tension.

Ventral furrow

This is an invagination generated by the first large-scale morphogenetic movement in the Drosophila melanogaster embryo, where the morphogenetic movement transforms a single layer of columnar epithelial cells into a multi-layered structure by triggering internalization of the most ventrally positioned cells of the embryonic epithelium.

Vertex models

A type of statistical mechanics model used to model the behaviour of adherent cell collectives, mostly epithelia. In vertex models, cell shape is represented by a set of vertices that mark the common point of three or more neighbouring cells and on which forces from within cells and in between cells act. These models can be two-dimensional or three-dimensional.

Wetting force

An adhesive force between a liquid and a solid, resulting from intermolecular interactions between the two and keeping the surfaces of both materials in contact with each other.

Yield strength

The stress at which a material ceases elastic deformation and undergoes plastic, permanent deformation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Wickström, S.A. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 25, 654–670 (2024). https://doi.org/10.1038/s41580-024-00719-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-024-00719-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing