Kisspeptin is an essential neuropeptide sitting at the apex of the hypothalamo-pituitary-gonadal (HPG) endocrine axis to regulate gonadotropin-releasing hormone (GnRH) neurons and downstream reproductive hormones. Kisspeptin neurons integrate feedback from sex steroids facilitating regulation of the menstrual cycle and mediate the effects of metabolic stressors on the reproductive axis. In this issue of the JCI, Torres and colleagues describe another pathway for kisspeptin signaling in astrocytes to influence GnRH neuronal output. Astrocytes had kisspeptin receptors that activated canonical intracellular signaling pathways to constrain the magnitude of kisspeptin-induced GnRH neuronal stimulation. Additionally, the appositions between kisspeptin and GnRH neurons were dynamic during the ovarian cycle, with astrocyte kisspeptin signaling proposed as a putative modulator of this neuroplasticity. Importantly, astrocyte kisspeptin signaling also mediated susceptibility to metabolic stressors and the development of obesity-induced hypogonadism, underscoring the physiological and pathological importance of this pathway and revealing the importance of nonneuronal signaling in reproductive health.
Ali Abbara, Waljit S. Dhillo