Skip to content

ucfai/team-stocks-2021-2023

Repository files navigation

2022-2023-Stocks-Prediction

2022-2023 Stocks Prediction is an ongoing project developed by the Artificial Intelligence club of the University of Central Florida.

Getting Started

Please follow the instructions below to install the components required for this project:

Clone the Repository

Opening your terminal and naviagte to your preffered file path. Type the followng command:

git clone https://github.com/kylekaracadag/Stocks-Prediction.git

Install Libraries

Using the same file path install the libraries by typing the following command:

pip install -r requirements.txt

Navigating the Repository

Folders:

  • Datasets: Includes all the datasets that were used to train the model.
  • Introduction_to_ML: A basic introduction to machine learning with Python for members in our team new to artificial intelligence.
  • Models: Downloaded models that can be reused without having to re-train the model for making stocks predictions.
  • Predictions: csv files with datapoints that include all the stock price predictions that were made.

Files:

  • Candle_Sticks_LSTM.ipynb: Generate candle sticks based on the real stock prices.
  • Candle_Sticks_Predictions.ipynb: Generate candle sticks based on the predicted stock prices.
  • Fix Dataset.ipynb: Program to improve the accuracy of the prediction csv file.
  • LSTM_Model.ipynb: The main notebook for our project. The model that was used to make predictions.
  • dataset.ipynb: Program that is used to extract datasets from yfinance given a specific time frame.
  • requirements.txt: Text file that contains all the required libraries for this project.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •