-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_heatmap_features_by_clusters.Rd
58 lines (44 loc) · 1.73 KB
/
plot_heatmap_features_by_clusters.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plot_heatmap_features_by_clusters.R
\name{plot_heatmap_features_by_clusters}
\alias{plot_heatmap_features_by_clusters}
\title{Plot an heatmap of feature values in cell clusters}
\usage{
plot_heatmap_features_by_clusters(
scMuffinList = NULL,
feature_source = NULL,
partition_id = NULL,
significance_matrix = NULL,
sig_threshold = 0.05,
file = NULL,
width = 180,
height = 180,
units = "mm",
res = 300,
scale = FALSE,
pal = NULL,
na_col = "black",
X_abs_max = NULL,
...
)
}
\arguments{
\item{scMuffinList}{scMuffinList object}
\item{feature_source}{It can be a "mean", "gss" or a numeric matrix (clusters-by-features). If "mean", the data.frame with average feature values among clusters will be used (default); if "gene_set_scoring", the average gene set values among clusters will be used.}
\item{partition_id}{identifier of the partition to be considered}
\item{significance_matrix}{optional significance matrix (clusters-by-features) of the same size of the data specified by means of feature_source}
\item{sig_threshold}{significance threshold}
\item{file}{File name to save the figure as png file}
\item{width}{image width}
\item{height}{image height}
\item{units}{image units}
\item{res}{image resolution}
\item{scale}{whether to scale the features}
\item{pal}{color palette. Default to rev(pals::brewer.rdylbu(10)) (negative values) or pals::brewer.ylorrd(5)) (positive values)}
\item{na_col}{color for NA values}
\item{X_abs_max}{maximum absolute value permitted, useful to avoid the effect of outliers over colors}
\item{...}{further arguments to ComplexHeatmap::Heatmap}
}
\description{
Plot an heatmap of feature values in cell clusters
}