Open
Description
See this example:
julia> using JuMP, EAGO
julia> model = Model(EAGO.Optimizer)
A JuMP Model
├ solver: EAGO - Easy Advanced Global Optimization
├ objective_sense: FEASIBILITY_SENSE
├ num_variables: 0
├ num_constraints: 0
└ Names registered in the model: none
julia> @variable(model, x <= 2)
x
julia> @variable(model, t)
t
julia> @constraint(model, log(x) >= t)
log(x) - t ≥ 0
julia> @objective(model, Max, t)
t
julia> optimize!(model)
┌ Warning: At least one branching variable is unbounded. This will interfere with EAGO's global
│ optimization routine and may cause unexpected results. Bounds have been automatically
│ generated at +/- 1E10 for all unbounded variables, but tighter user-defined bounds are
│ highly recommended. To disable this warning and the automatic generation of bounds, use
│ the option `unbounded_check = false`.
└ @ EAGO ~/.julia/packages/EAGO/oWEmA/src/eago_optimizer/optimize/nonconvex/stack_management.jl:256
******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit https://github.com/coin-or/Ipopt
******************************************************************************
---------------------------------------------------------------------------------------------------------------------------------
| Iteration # | Nodes | Lower Bound | Upper Bound | Gap | Ratio | Timer | Time Left |
---------------------------------------------------------------------------------------------------------------------------------
| 1000 | 21 | -1.000E+10 | Inf | Inf | Inf | 10.98 | 3589.02 |
| 2000 | 21 | -1.000E+10 | Inf | Inf | Inf | 12.30 | 3587.70 |
| 3000 | 19 | -1.000E+10 | Inf | Inf | Inf | 13.57 | 3586.43 |
| 4000 | 21 | -1.000E+10 | Inf | Inf | Inf | 14.90 | 3585.10 |
| 5000 | 19 | -1.000E+10 | Inf | Inf | Inf | 16.21 | 3583.79 |
| 6000 | 21 | -1.000E+10 | Inf | Inf | Inf | 17.53 | 3582.47 |
| 7000 | 19 | -1.000E+10 | Inf | Inf | Inf | 18.81 | 3581.19 |
| 8000 | 21 | -1.000E+10 | Inf | Inf | Inf | 20.11 | 3579.89 |
| 9000 | 17 | -1.000E+10 | Inf | Inf | Inf | 21.41 | 3578.59 |
| 10000 | 19 | -1.000E+10 | Inf | Inf | Inf | 22.72 | 3577.28 |
| 11000 | 19 | -1.000E+10 | Inf | Inf | Inf | 24.03 | 3575.97 |
| 12000 | 19 | -1.000E+10 | Inf | Inf | Inf | 25.36 | 3574.64 |
| 13000 | 19 | -1.000E+10 | Inf | Inf | Inf | 26.67 | 3573.33 |
| 14000 | 17 | -1.000E+10 | Inf | Inf | Inf | 28.00 | 3572.00 |
| 15000 | 17 | -1.000E+10 | Inf | Inf | Inf | 29.28 | 3570.72 |
I expected it to solve quickly.
Found because I've been adding new tests to MOI. I'll fix the test in MOI to add finite bounds, but I thought this was an interesting test case.
Metadata
Assignees
Labels
No labels