Abstract
The 5-HT3 receptor (5-HT3R) occupies a special place among the serotonin receptor subtypes because it has been shown to be a ligand-gated ion channel, which is involved in a number of physiological functions and important pathologies. 5-HT3R antagonists have shown an outstanding efficacy in the control of the emesis induced by anticancer chemotherapy and few adverse side-effects, so as to revolutionize the treatment of nausea in cancer patients. This review covers the authors work performed during the past decade in the development of 5-HT3R ligands belonging to the class of arylpiperazine derivatives related to quipazine (quipazine-like arylpiperazines, QLAs) and represents the extension of the review previously published in Current Topics in Medicinal Chemistry in 2002. The discussion is mainly focused on the most significant structure-affinity relationships emerged in the progress of the work and shows how the original ideas have evolved in the recent years.
Current Topics in Medicinal Chemistry
Title: The Interactions of the 5-HT3 Receptor with Quipazine-Like Arylpiperazine Ligands. The Journey Track at the End of the First Decade of the Third Millennium
Volume: 10 Issue: 5
Author(s): Andrea Cappelli, Stefania Butini, Antonella Brizzi, Sandra Gemma, Salvatore Valenti, Germano Giuliani, Maurizio Anzini, Laura Mennuni, Giuseppe Campiani, Vittorio Brizzi and Salvatore Vomero
Affiliation:
Abstract: The 5-HT3 receptor (5-HT3R) occupies a special place among the serotonin receptor subtypes because it has been shown to be a ligand-gated ion channel, which is involved in a number of physiological functions and important pathologies. 5-HT3R antagonists have shown an outstanding efficacy in the control of the emesis induced by anticancer chemotherapy and few adverse side-effects, so as to revolutionize the treatment of nausea in cancer patients. This review covers the authors work performed during the past decade in the development of 5-HT3R ligands belonging to the class of arylpiperazine derivatives related to quipazine (quipazine-like arylpiperazines, QLAs) and represents the extension of the review previously published in Current Topics in Medicinal Chemistry in 2002. The discussion is mainly focused on the most significant structure-affinity relationships emerged in the progress of the work and shows how the original ideas have evolved in the recent years.
Export Options
About this article
Cite this article as:
Cappelli Andrea, Butini Stefania, Brizzi Antonella, Gemma Sandra, Valenti Salvatore, Giuliani Germano, Anzini Maurizio, Mennuni Laura, Campiani Giuseppe, Brizzi Vittorio and Vomero Salvatore, The Interactions of the 5-HT3 Receptor with Quipazine-Like Arylpiperazine Ligands. The Journey Track at the End of the First Decade of the Third Millennium, Current Topics in Medicinal Chemistry 2010; 10 (5) . https://dx.doi.org/10.2174/156802610791111560
DOI https://dx.doi.org/10.2174/156802610791111560 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
Addressing the Most Common Causes of Death with Niacin/NAD and Inositol Polyphosphates
The most common causes of death in the world are cardiovascular disease (CVD) and cancer. These are perhaps best addressed by reducing lipodystrophy and blockages with niacin and inositol polyphosphates (e.g., IP6+inositol) respectively when addressing CVD. Niacin serves as a vitamin by virtue of its role as a skeletal precursor ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Physiological Roles of Neurite Outgrowth Inhibitors in Myelinated Axons of the Central Nervous System – Implications for the Therapeutic Neutralization of Neurite Outgrowth Inhibitors
Current Pharmaceutical Design Intravenous and Regional Paclitaxel Formulations
Current Medicinal Chemistry Hsa_Circ_0000021 Sponges miR-3940-3p/KPNA2 Expression to Promote Cervical Cancer Progression
Current Molecular Pharmacology The 9p21 Locus and its Potential Role in Atherosclerosis Susceptibility; Molecular Mechanisms and Clinical Implications
Current Pharmaceutical Design Recent Development in Nano-Sized Dosage Forms of Plant Alkaloid Camptothecin-Derived Drugs
Recent Patents on Anti-Cancer Drug Discovery Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy
Current Medicinal Chemistry Bioenergetics Pathways and Therapeutic Resistance in Gliomas: Emerging Role of Mitochondria
Current Pharmaceutical Design MATra - Magnet Assisted Transfection: Combining Nanotechnology and Magnetic Forces to Improve Intracellular Delivery of Nucleic Acids
Current Pharmaceutical Biotechnology Hypoxia Activated Prodrugs: Factors Influencing Design and Development
Current Medicinal Chemistry Focused Microarray Analysis: Characterization of Phenomes by Gene Expression Profiling
Current Pharmacogenomics Jab1-siRNA Induces Cell Growth Inhibition and Cell Cycle Arrest in Gall Bladder Cancer Cells via Targeting Jab1 Signalosome
Anti-Cancer Agents in Medicinal Chemistry Nitroimidazole Radiopharmaceuticals in Hypoxia: Part II Cytotoxicity and Radiosensitization Applications
Current Radiopharmaceuticals Molecular Targets of FTY720 (Fingolimod)
Current Molecular Medicine Subject Index To Volume 7
Current Pharmaceutical Biotechnology Heterologous Production of Death Ligands’ and Death Receptors’ Extracellular Domains: Structural Features and Efficient Systems
Protein & Peptide Letters Anticancer Drug Discovery from the Marine Environment
Recent Patents on Anti-Cancer Drug Discovery 64Cu Labeled AmBaSar-RGD2 for micro-PET Imaging of Integrin αvβ3 Expression
Current Radiopharmaceuticals MtDNA As a Cancer Marker: A Finally Closed Chapter?
Current Genomics The Role of Shcbp1 in Signaling and Disease
Current Cancer Drug Targets An Investigative Approach to Treatment Modalities for Squamous Cell Carcinoma of Skin
Current Drug Delivery