Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Characterization, and Molecular Modeling Studies of Novel Indenopyridazine-thiazole Molecular Hybrids

Author(s): Jehan Y. Al-Humaidi, Sobhi M. Gomha*, AbdElAziz A. Nayl, Ashraf A. Aly, Mahmoud A. A. Ibrahim, Magdi E. A. Zaki, Stefan Bräse* and Reda A. Haggam

Volume 22, Issue 1, 2025

Published on: 12 February, 2024

Page: [79 - 89] Pages: 11

DOI: 10.2174/0115701794266795231129074028

Price: $65

TIMBC 2025
Abstract

Background: Previous studies have reported various biological activities of indenopyridazine and thiazole derivatives, including antiviral activity and CoV-19 inhibition. In this paper, the authors aimed to design, synthesize, and characterize a novel series of indenopyridazinethiazoles, starting with 2-(4-cyano-3-oxo-2,3-dihydro-9H-indeno[2,1-c]pyridazin-9-ylidene)-hydrazine-1-carbothioamide and available laboratory reagents.

Methods: The strategy involved the synthesis of indeno[2,1-c]pyridazincarbothioamide, followed by its reaction with various hydrazonoyl chlorides and α-halocompounds (phenacyl bromides and α- chloroketones) to obtain the desired indenopyridazinethiazole derivatives. The synthesized structures were confirmed using IR, NMR, mass spectra, elemental analysis, and alternative synthesis when possible. Docking scores and poses of thirteen synthesized compounds were examined using Auto- Dock4.2.6 software against multiple targets of SARS-CoV-2, including 3C-like protease (3CLpro), helicase, receptor binding domain (RBD), papain-like protease (PLpro), neuropilin-1 (NRP-1), RNAdependent RNA polymerase (RdRp), and human angiotensin‐converting enzyme 2 (ACE2).

Results: Docking predictions revealed that compound 13d exhibited high potency against 3CLpro and helicase, with docking scores of -10.9 and -10.5 kcal/mol, respectively. Compound 10c showed superior docking scores against RBD and ACE2, with values of -8.7 and -11.8 kcal/mol, respectively. Compounds 10a, 13c, and 7b demonstrated excellent docking scores against RdRp, PLpro, and NRP- 1, with values of -10.3, -10.4, and -8.6 kcal/mol, respectively.

Conclusion: The authors recommend further experimental assessments of compounds 13d, 10c, 10a, 13c, and 7b against SARS-CoV-2 multi-targets, considering their promising docking scores.

Keywords: Thiazole, indenopyridazine, ninhydrin, SARS-CoV-2 multi-targets, docking predictions, oxothiazolidine.

« Previous
Graphical Abstract
[1]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[2]
Luo, C.M.; Wang, N.; Yang, X.L.; Liu, H.Z.; Zhang, W.; Li, B.; Hu, B.; Peng, C.; Geng, Q.B.; Zhu, G.J.; Li, F.; Shi, Z.L. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. J. Virol., 2018, 92(13), e00116-e00118.
[http://dx.doi.org/10.1128/JVI.00116-18] [PMID: 29669833]
[3]
Chu, H.; Chan, C.M.; Zhang, X.; Wang, Y.; Yuan, S.; Zhou, J.; Au-Yeung, R.K.H.; Sze, K.H.; Yang, D.; Shuai, H.; Hou, Y.; Li, C.; Zhao, X.; Poon, V.K.M.; Leung, S.P.; Yeung, M.L.; Yan, J.; Lu, G.; Jin, D.Y.; Gao, G.F.; Chan, J.F.W.; Yuen, K.Y. Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. J. Biol. Chem., 2018, 293(30), 11709-11726.
[http://dx.doi.org/10.1074/jbc.RA118.001897] [PMID: 29887526]
[4]
Samrat, S.K.; Tharappel, A.M.; Li, Z.; Li, H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res., 2020, 288, 198141.
[http://dx.doi.org/10.1016/j.virusres.2020.198141] [PMID: 32846196]
[5]
Negi, M.; Chawla, P.A.; Faruk, A.; Chawla, V. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorg. Chem., 2020, 104, 104315.
[http://dx.doi.org/10.1016/j.bioorg.2020.104315] [PMID: 33007742]
[6]
Abu-Melha, S.; Edrees, M.M.; Said, M.A.; Riyadh, S.M.; Al-Kaff, N.S.; Gomha, S.M. Potential COVID-19 drug candidates based on diazinyl-thiazol-imine moieties: Synthesis and greener pastures biological study. Molecules, 2022, 27(2), 488.
[http://dx.doi.org/10.3390/molecules27020488] [PMID: 35056802]
[7]
Said, M.A.; Riyadh, S.M.; Al-Kaff, N.S.; Nayl, A.A.; Khalil, K.D. Bräse, S.; Gomha, S.M. Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates. Arab. J. Chem., 2022, 15(9), 104101.
[http://dx.doi.org/10.1016/j.arabjc.2022.104101] [PMID: 35845755]
[8]
Gomha, S.M.; Riyadh, S.M.; Abdellattif, M.H.; Abolibda, T.Z.; Abdel-aziz, H.M.; Nayl, A.A.; Elgohary, A.M.; Elfiky, A.A. Synthesis and in silico study of some new bis-[1,3,4]thiadiazolimines and bis-thiazolimines as potential inhibitors for SARS-CoV-2 main protease. Curr. Issues Mol. Biol., 2022, 44(10), 4540-4556.
[http://dx.doi.org/10.3390/cimb44100311] [PMID: 36286026]
[9]
Jones, R.A.; Whitmore, A. The tautomeric properties of 6-(2-pyrrolyl)pyridazin-3-one and 6-(2-pyrrolyl) pyridazin-3-thione. ARKIVOC, 2007, 11, 114-119.
[10]
Abu-Melha, S.; Gomha, S.; Abouzied, A.; Edrees, M.; Abo Dena, A.; Muhammad, Z. Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential anti-microbial agents against antibiotic-resistant bacteria. Molecules, 2021, 26(14), 4260.
[http://dx.doi.org/10.3390/molecules26144260] [PMID: 34299535]
[11]
Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Verma, G.; Khan, M.F.; Alam, M.M. The therapeutic journey of pyridazinone. Eur. J. Med. Chem., 2016, 123, 256-281.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.061] [PMID: 27484513]
[12]
Salvadeo, A.; Villa, G.; Segagni, S.; Piazza, V.; Picardi, L.; Romano, M.; Parini, J. Cadralazine, a new vasodilator, in addition to a beta-blocker for long-term treatment of hypertension. Arzneimittelforschung, 1985, 35(3), 623-625.
[PMID: 2859865]
[13]
Imad, S.; Nisar, S.; Maqsood, Z.T. A study of redox properties of hydralazine hydrochloride, an antihypertensive drug. J. Saudi Chem. Soc., 2010, 14(3), 241-245.
[http://dx.doi.org/10.1016/j.jscs.2010.02.003]
[14]
Fung, M.; Thornton, A.; Mybeck, K.; Wu, J.H.H.; Hornbuckle, K.; Muniz, E. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Inf. J., 2001, 35(1), 293-317.
[http://dx.doi.org/10.1177/009286150103500134]
[15]
Asif, M. The pharmacological importance of some diazine containing drug molecules. Sop Trans. Org. Chem., 2014, 1, 1-16.
[http://dx.doi.org/10.15764/STAC.2014.01001]
[16]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel pyridazines. Eur. J. Med. Chem., 2012, 54, 33-41.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.020] [PMID: 22608761]
[17]
Sweeney, Z.K.; Dunn, J.P.; Li, Y.; Heilek, G.; Dunten, P.; Elworthy, T.R.; Han, X.; Harris, S.F.; Hirschfeld, D.R.; Hogg, J.H.; Huber, W.; Kaiser, A.C.; Kertesz, D.J.; Kim, W.; Mirzadegan, T.; Roepel, M.G.; Saito, Y.D.; Silva, T.M.P.C.; Swallow, S.; Tracy, J.L.; Villasenor, A.; Vora, H.; Zhou, A.S.; Klumpp, K. Discovery and optimization of pyridazinone non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett., 2008, 18(15), 4352-4354.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.072] [PMID: 18632268]
[18]
Li, D.; Zhan, P.; Liu, H.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Liu, X. Synthesis and biological evaluation of pyridazine derivatives as novel HIV-1 NNRTIs. Bioorg. Med. Chem., 2013, 21(7), 2128-2134.
[http://dx.doi.org/10.1016/j.bmc.2012.12.049] [PMID: 23415090]
[19]
Ferro, S.; Agnello, S.; Barreca, M.L.; De Luca, L.; Christ, F.; Gitto, R. Synthesis of new pyridazine derivatives as potential anti‐HIV‐1 agents. J. Heterocycl. Chem., 2009, 46(6), 1420-1424.
[http://dx.doi.org/10.1002/jhet.230]
[20]
Rashad, A.E.; Shamroukh, A.H.; Ali, M.A.; Abdel-Motti, F.M. Synthesis and antiviral screening of some novel pyridazine and triazolopyridazine nucleosides. Heteroatom Chem., 2007, 18(3), 274-282.
[http://dx.doi.org/10.1002/hc.20296]
[21]
Flefel, E.; Tantawy, W.; El-Sofany, W.; El-Shahat, M.; El-Sayed, A.; Abd-Elshafy, D. Synthesis of some new pyridazine derivatives for anti-HAV evaluation. Molecules, 2017, 22(1), 148-22.
[http://dx.doi.org/10.3390/molecules22010148] [PMID: 28106751]
[22]
Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V.K.; Smith, D.B.; Jekle, A.; Kinkade, A.; Symons, J.A.; Jin, Z.; Deval, J.; Zhang, Q.; Tam, Y.; Chanda, S.; Blatt, L.; Beigelman, L. Synthesis and anti-influenza activity of pyridine, pyridazine, and pyrimidine C -nucleosides as favipiravir (T-705) analogues. J. Med. Chem., 2016, 59(10), 4611-4624.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01933] [PMID: 27120583]
[23]
Asif, M. Pyridazine derivatives as HCV polymerase inhibitors: A drug discovery for the treatment of hepatitis c virus infection. Modern Approach. Drug Desig., 2018, 2(2), 1-20.
[http://dx.doi.org/10.31031/MADD.2018.02.000533]
[24]
Flefel, E.M.; Abdel-Mageid, R.E.; Tantawy, W.A.; Ali, M.A.; Amr, A.E.G.E. Heterocyclic compounds based on 3-(4-bromophenyl) azo-5-phenyl-2(3H)-furanone: Anti-avian influenza virus (H5N1) activity/Heterociklički derivati 3-(4-bromfenil) azo-5-fenil-2(3H)-furanona: Djelovanje na virus ptičje gripe (H5N1). Acta Pharm., 2012, 62(4), 593-606.
[http://dx.doi.org/10.2478/v10007-012-0037-7] [PMID: 23333891]
[25]
Galtier, C.; Mavel, S.; Snoeck, R.; Andreï, G.; Pannecouque, C.; Witvrouw, M.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesis and antiviral activities of 3-aralkylthiomethylimidazo[1,2-b]pyridazine derivatives. Antivir. Chem. Chemother., 2003, 14(4), 177-182.
[http://dx.doi.org/10.1177/095632020301400402] [PMID: 14582846]
[26]
Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf., 2014, 13(6), 759-774.
[PMID: 24845946]
[27]
Huang, Y.S.; Liu, J.Q.; Zhang, L-J.; Lu, H-L. Synthesis of 1-Indanones from Benzoic Acids. Ind. Eng. Chem. Res., 2012, 51(3), 1105-1109.
[http://dx.doi.org/10.1021/ie202369w]
[28]
Maresova, P.; Mohelska, H.; Kuca, K. Social and family load of Alzheimer’s disease. Appl. Econ., 2016, 48(21), 1936-1948.
[http://dx.doi.org/10.1080/00036846.2015.1111986]
[29]
Kumar, S.; Aggarwal, R. Thiazole: A privileged motif in marine natural products. Mini Rev. Org. Chem., 2018, 16(1), 26-34.
[http://dx.doi.org/10.2174/1570193X15666180412152743]
[30]
Sujatha, K.; Vedula, R.R. Novel one-pot expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions. Synth. Commun., 2018, 48(3), 302-308.
[http://dx.doi.org/10.1080/00397911.2017.1399422]
[31]
Abdalla, M.A.; Gomha, S.M.; Abdelaziz, M.; Serag, N. Synthesis and antiviral evaluation of some novel thiazoles and 1,3-thiazines substituted with pyrazole moiety against rabies virus. Turk. J. Chem., 2016, 40, 441-453.
[http://dx.doi.org/10.3906/kim-1506-13]
[32]
Al-Humaidi, J.Y.; Gomha, S.M.; El-Ghany, N.A.A.; Farag, B.; Zaki, M.E.A.; Abolibda, T.Z.; Mohamed, N.A. Green synthesis and molecular docking study of some new thiazoles using terephthalohydrazide chitosan hydrogel as ecofriendly biopolymeric catalyst. Catalysts, 2023, 13(9), 1311.
[http://dx.doi.org/10.3390/catal13091311]
[33]
Nayak, S.; Gaonkar, S.L. A Review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem., 2019, 19(3), 215-238.
[http://dx.doi.org/10.2174/1389557518666180816112151] [PMID: 30112994]
[34]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[35]
Konno, S.; Thanigaimalai, P.; Yamamoto, T.; Nakada, K.; Kakiuchi, R.; Takayama, K.; Yamazaki, Y.; Yakushiji, F.; Akaji, K.; Kiso, Y.; Kawasaki, Y.; Chen, S.E.; Freire, E.; Hayashi, Y. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg. Med. Chem., 2013, 21(2), 412-424.
[http://dx.doi.org/10.1016/j.bmc.2012.11.017] [PMID: 23245752]
[36]
Kaminskyy, D.V. Screening of the antiviral activity in the range of C5 and N3 substituted 4-thiazolidinone derivatives. J. Organic Pharmaceut. Chem., 2015, 13(2(50)), 64-69.
[http://dx.doi.org/10.24959/ophcj.15.819]
[37]
Atamanyuk, D.; Zimenkovsky, B.; Atamanyuk, V.; Lesyk, R. 5-Ethoxymethylidene-4-thioxo- 2-thiazolidinone as versatile building block for novel biorelevant small molecules with thiopyrano[2,3-d][1,3]thiazole core. Synth. Commun., 2014, 44(2), 237-244.
[http://dx.doi.org/10.1080/00397911.2013.800552]
[38]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer and antiviral activities of new 2-pyrazoline-substituted 4-thiazolidinones. J. Heterocycl. Chem., 2013, 50(S1), E55-E62.
[http://dx.doi.org/10.1002/jhet.1056]
[39]
Haggam, R.A.; Assy, M.G.; Mohamed, E.K.; Mohamed, A.S. Synthesis of Pyrano[2,3‐ d]pyrimidine‐2,4‐diones and Pyridino[2,3‐ d]pyrimidine‐2,4,6,8‐tetraones: Evaluation Antitumor Activity. J. Heterocycl. Chem., 2020, 57(2), 842-850.
[http://dx.doi.org/10.1002/jhet.3830]
[40]
Gomha, S.M.; Abdelhady, H.A.; Hassain, D.Z.H.; Abdelmonsef, A.H.; El-Naggar, M.; Elaasser, M.M.; Mahmoud, H.K. Thiazole based thiosemicarbazones: Synthesis, cytotoxicity evaluation and molecular docking study. Drug Des. Devel. Ther., 2021, 15, 659-677.
[http://dx.doi.org/10.2147/DDDT.S291579] [PMID: 33633443]
[41]
Haggam, R.A.; Assy, M.G.; Sherif, M.H.; Galahom, M.M. Facile synthesis of some condensed 1,3-thiazines and thiazoles under conventional conditions: Antitumor activity. Res. Chem. Intermed., 2017, 43(11), 6299-6315.
[http://dx.doi.org/10.1007/s11164-017-2990-8]
[42]
Edrees, M.; Melha, S.; Saad, A.; Kheder, N.; Gomha, S.; Muhammad, Z. Eco-friendly synthesis, characterization and biological evaluation of some new pyrazolines containing thiazole moiety as potential anticancer and anti-microbial agents. Molecules, 2018, 23(11), 2970.
[http://dx.doi.org/10.3390/molecules23112970] [PMID: 30441815]
[43]
Gomha, S.M.; Muhammad, Z.A.; Abdel-aziz, H.M.; Matar, I.K.; El-Sayed, A.A. Green synthesis, molecular docking and anticancer activity of novel 1,4-dihydropyridine-3,5-dicarbohydrazones under grind-stone chemistry. Green Chem. Lett. Rev., 2020, 13, 6-17.
[http://dx.doi.org/10.1007/s11164-021-04501-y]
[44]
Abbas, I.M.; Riyadh, S.M.; Abdallah, M.A.; Gomha, S.M. A novel route to tetracyclic fused tetrazines and thiadiazines. J. Heterocycl. Chem., 2006, 43(4), 935-942.
[http://dx.doi.org/10.1002/jhet.5570430419]
[45]
Ibrahim, M.S.; Farag, B.; Al-Humaidi, J.; Zaki, M.E.A.; Fathalla, M.; Gomha, S.M. Mechanochemical synthesis and molecular docking studies of new azines bearing indole as anticancer agents. Molecules, 2023, 28(9), 3869.
[http://dx.doi.org/10.3390/molecules28093869] [PMID: 37175279]
[46]
Haggam, R.A.; El-Sayed, H.A.; Said, S.A.; Ahmed, M.H.M.; Moustafa, A.H.; Abd-El-Noor, R.E. O ‐glycosylation/alkylation and antimicrobial activity of 4,6‐diaryl‐2‐oxonicotinonitrile derivatives. J. Heterocycl. Chem., 2017, 54(1), 375-383.
[http://dx.doi.org/10.1002/jhet.2593]
[47]
Gomha, S.M.; Eldebss, T.M.A.; Badrey, M.G.; Abdulla, M.M.; Mayhoub, A.S. Novel 4-heteroaryl-antipyrines as DPP-IV inhibitors. Chem. Biol. Drug Des., 2015, 86(5), 1292-1303.
[http://dx.doi.org/10.1111/cbdd.12593] [PMID: 26032047]
[48]
Gomha, S.; Edrees, M.; Muhammad, Z.; El-Reedy, A. 5-(Thiophen-2-yl)-1,3,4-thiadiazole derivatives: Synthesis, molecular docking and in vitro cytotoxicity evaluation as potential anticancer agents. Drug Des. Devel. Ther., 2018, 12, 1511-1523.
[http://dx.doi.org/10.2147/DDDT.S165276] [PMID: 29881258]
[49]
Gomha, S.M.; Abdelhamid, A.O.; Kandil, O.M.; Kandeel, S.M.; Abdelrehem, N.A. Synthesis and molecular docking of some novel thiazoles and thiadiazoles incorporating pyranochromene moiety as potent anticancer agents. Mini-Reviews. Med. Chem., 2018, 18, 1670-1682.
[50]
Gomha, S.; Abdallah, M.; Abd El-Aziz, M.; Serag, N. Ecofriendly one-pot synthesis and antiviral evaluation of novel pyrazolyl pyrazolines of medicinal interest. Turk. J. Chem., 2016, 40, 484-498.
[http://dx.doi.org/10.3906/kim-1510-25]
[51]
Abolibda, T.Z.; Fathalla, M.; Farag, B.; Zaki, M.E.A.; Gomha, S.M. Synthesis and Molecular docking of Some Novel 3-thiazolyl-Coumarins as Inhibitors of VEGFR-2 kinase. Molecules, 2023, 28(2), 689.
[http://dx.doi.org/10.3390/molecules28020689] [PMID: 36677750]
[52]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[53]
Newman, J.A.; Douangamath, A.; Yazdani, S.; Yosaatmadja, Y.; Aimon, A. Brandão-Neto, J.; Dunnett, L.; Gorrie-stone, T.; Skyner, R.; Fearon, D.; Schapira, M.; von Delft, F.; Gileadi, O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 hel-icase. Nat. Commun., 2021, 12(1), 4848.
[54]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[55]
Osipiuk, J.; Jedrzejczak, R.; Tesar, C.; Endres, M.; Stols, L.; Babnigg, G.; Kim, Y.; Michalska, K.; Joachimiak, A.J.R.P. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2020, 12(1), 743.
[56]
Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.E.; Williamson, M.K. Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; Greber, U.F.; Horvath, P.; Sessions, R.B.; Helenius, A.; Hiscox, J.A.; Teesalu, T.; Matthews, D.A.; Davidson, A.D.; Collins, B.M.; Cullen, P.J.; Yamauchi, Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020, 370(6518), 861-865.
[http://dx.doi.org/10.1126/science.abd3072] [PMID: 33082294]
[57]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L.W.; Wang, Q.; Lou, Z.; Rao, Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368(6492), 779-782.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[58]
Martí-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sánchez, R.; Melo, F.; Šali, A. J. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, 29, 291-325.
[59]
Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A.H++ : A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res., 2005, 33, W368-W371.
[60]
Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem., 1999, 20(7), 720-729.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X] [PMID: 34376030]
[61]
OpenEye Scientific Software; Santa Fe, NM, USA, 2016.
[62]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[63]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[64]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[65]
Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28(7), 849-857.
[http://dx.doi.org/10.1021/jm00145a002] [PMID: 3892003]
[66]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Jaragh-Alhadad, L.A.; Atia, M.A.M.; Alzahrani, O.R.; Ahmed, M.N.; Moustafa, M.S.; Soliman, M.E.S.; Shawky, A.M.; Paré, P.W.; Hegazy, M.E.F.; Sidhom, P.A. Exploring toxins for hunting SARS-CoV-2 main protease inhibitors: Molecular docking, molecular dynamics, pharmacokinetic properties, and reactome study. Pharmaceuticals, 2022, 15(2), 153-174.
[http://dx.doi.org/10.3390/ph15020153] [PMID: 35215266]
[67]
Gomha, S.M. A facile one-pot synthesis of 6,7,8,9-tetrahydrobenzo[4,5]thieno[2,3-d]-1,2,4-triazolo[4,5-a]pyrimidin-5-ones. Monatsh. Chem., 2009, 140(2), 213-220.
[http://dx.doi.org/10.1007/s00706-008-0060-z]
[68]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5] [PMID: 31572983]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy