Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Melatonin as a Promising Agent for Cancer Treatment: Insights into its Effects on the Wnt/beta-catenin Signaling Pathway

Author(s): Amirhossein Davoodvandi, Reza Asemi, Mehran Sharifi, Russel J. Reiter*, Seyed Amirhassan Matini, Seyyed Mehdi Mirhashemi and Zatollah Asemi*

Volume 31, Issue 11, 2024

Published on: 08 June, 2023

Page: [1315 - 1331] Pages: 17

DOI: 10.2174/0929867330666230409141957

Price: $65

TIMBC 2025
Abstract

In recent years, substantial advances have been made in cancer treatment modalities. Yet, within the last three decades, neither cancer incidence nor the cancer-induced mortality rate has changed. Available anti-cancer chemotherapeutics possess remarkably restricted effectiveness and often have severe adverse effects. Hence, the identification of novel pharmaceutical agents that do not exhibit these major disadvantages is imperative. Melatonin, an important endogenous molecule synthesized and secreted by the pineal gland, is a promising chemical agent that has been comprehensively assessed over the last decades for its anti-inflammatory and anti-cancer properties. Melatonin is reportedly a significant inhibitor of cancer initiation, progression, and metastasis. The anti-- cancer potential of melatonin is principally mediated by reversing the up-regulated amounts of different transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic agents. Also, melatonin often has signifcant inhibitory effects on cancer cell proliferation through either promoting apoptosis or inducing cell cycle arrest. The current review provides an insight into melatonin-induced effects against various human cancers with a particular focus on the regulation of Wnt/β-catenin signaling pathway.

Keywords: Melatonin, cancer, signaling, Wnt/β-catenin, cell, chemotherapeutics.

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Gupta, A.P.; Pandotra, P.; Sharma, R.; Kushwaha, M.; Gupta, S. Marine resource: A promising future for anticancer drugs. Studies in natural products chemistry. Elsevier Inc. , 2013, 229-325.
[3]
Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther., 2020, 5(1), 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[4]
Umar, A.; Dunn, B.K.; Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer, 2012, 12(12), 835-848.
[http://dx.doi.org/10.1038/nrc3397] [PMID: 23151603]
[5]
Piska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (piplartine) as a lead compound for anticancer agents – Synthesis and properties of analogues: A mini-review. Eur. J. Med. Chem., 2018, 156, 13-20.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.057] [PMID: 30006159]
[6]
Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers, 2018, 10(12), 483.
[http://dx.doi.org/10.3390/cancers10120483] [PMID: 30518036]
[7]
Karges, J.; Yempala, T.; Tharaud, M.; Gibson, D.; Gasser, G. A multi-action and multi-target Ru II –Pt IV conjugate combining cancer-activated chemotherapy and photodynamic therapy to overcome drug resistant cancers. Angew. Chem. Int. Ed., 2020, 59(18), 7069-7075.
[http://dx.doi.org/10.1002/anie.201916400] [PMID: 32017379]
[8]
Ma, Q.; Reiter, R.J.; Chen, Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis, 2020, 23(2), 91-104.
[http://dx.doi.org/10.1007/s10456-019-09689-7] [PMID: 31650428]
[9]
Cutando, A.; López-Valverde, A.; Arias-Santiago, S.; DE Vicente, J.; DE Diego, R.G. Role of melatonin in cancer treatment. Anticancer Res., 2012, 32(7), 2747-2753.
[PMID: 22753734]
[10]
Luchetti, F.; Canonico, B.; Betti, M.; Arcangeletti, M.; Pilolli, F.; Piroddi, M.; Canesi, L.; Papa, S.; Galli, F. Melatonin signaling and cell protection function. FASEB J., 2010, 24(10), 3603-3624.
[http://dx.doi.org/10.1096/fj.10-154450] [PMID: 20534884]
[11]
Markus, R.P.; Sousa, K.S.; da Silveira Cruz-Machado, S.; Fernandes, P.A.; Ferreira, Z.S. Possible role of pineal and extra-pineal melatonin in surveillance, immunity, and first- line defense. Int. J. Mol. Sci., 2021, 22(22), 12143.
[http://dx.doi.org/10.3390/ijms222212143] [PMID: 34830026]
[12]
Sanchez-Barcelo, E.J.; Mediavilla, M.D.; Alonso-Gonzalez, C.; Reiter, R.J. Melatonin uses in oncology: Breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin. Investig. Drugs, 2012, 21(6), 819-831.
[http://dx.doi.org/10.1517/13543784.2012.681045] [PMID: 22500582]
[13]
Davoodvandi, A.; Nikfar, B.; Reiter, R.J.; Asemi, Z. Melatonin and cancer suppression: Insights into its effects on DNA methylation. Cell. Mol. Biol. Lett., 2022, 27(1), 73.
[http://dx.doi.org/10.1186/s11658-022-00375-z] [PMID: 36064311]
[14]
Talib, W.H. A ketogenic diet combined with melatonin overcomes cisplatin and vincristine drug resistance in breast carcinoma syngraft. Nutrition, 2020, 72, 110659.
[http://dx.doi.org/10.1016/j.nut.2019.110659] [PMID: 31986320]
[15]
Talib, W.H.; Odeh, L.H.; Basheti, I. Synergistic effect of thymoquinone and melatonin against breast cancer implanted in mice. J. Cancer Res. Ther., 2018, 14(S9), 324.
[http://dx.doi.org/10.4103/0973-1482.235349] [PMID: 29970684]
[16]
Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie, 2015, 61(2-3), 77-84.
[http://dx.doi.org/10.1016/j.neuchi.2015.03.002] [PMID: 25908646]
[17]
Boutin, J.A.; Witt-Enderby, P.A.; Sotriffer, C.; Zlotos, D.P. Melatonin receptor ligands: A pharmaco-chemical perspective. J. Pineal Res., 2020, 69(3), e12672.
[http://dx.doi.org/10.1111/jpi.12672] [PMID: 32531076]
[18]
Salehi, B.; Sharopov, F.; Fokou, P.; Kobylinska, A.; Jonge, L.; Tadio, K.; Sharifi-Rad, J.; Posmyk, M.; Martorell, M.; Martins, N.; Iriti, M. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells, 2019, 8(7), 681.
[http://dx.doi.org/10.3390/cells8070681] [PMID: 31284489]
[19]
Amaral, F.G.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab., 2018, 62(4), 472-479.
[http://dx.doi.org/10.20945/2359-3997000000066] [PMID: 30304113]
[20]
Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab., 2008, 19(1), 17-24.
[http://dx.doi.org/10.1016/j.tem.2007.10.007] [PMID: 18155917]
[21]
Reiter, R.J. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev., 1991, 12(2), 151-180.
[http://dx.doi.org/10.1210/edrv-12-2-151] [PMID: 1649044]
[22]
Pourhanifeh, M.H.; Mahdavinia, M.; Reiter, R.J.; Asemi, Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J. Cell. Physiol., 2019, 234(8), 12142-12148.
[http://dx.doi.org/10.1002/jcp.28129] [PMID: 30618091]
[23]
Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173(18), 2702-2725.
[http://dx.doi.org/10.1111/bph.13536] [PMID: 27314810]
[24]
Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 361-383.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]
[25]
Ng, K.Y.; Leong, M.K.; Liang, H.; Paxinos, G. Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Struct. Funct., 2017, 222(7), 2921-2939.
[http://dx.doi.org/10.1007/s00429-017-1439-6] [PMID: 28478550]
[26]
Stauch, B.; Johansson, L.C.; Cherezov, V. Structural insights into melatonin receptors. FEBS J., 2020, 287(8), 1496-1510.
[http://dx.doi.org/10.1111/febs.15128] [PMID: 31693784]
[27]
Moloudizargari, M.; Moradkhani, F.; Hekmatirad, S.; Fallah, M.; Asghari, M.H.; Reiter, R.J. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci., 2021, 267, 118934.
[http://dx.doi.org/10.1016/j.lfs.2020.118934] [PMID: 33385405]
[28]
Bondy, S.C.; Campbell, A. Mechanisms underlying tumor suppressive properties of melatonin. Int. J. Mol. Sci., 2018, 19(8), 2205.
[http://dx.doi.org/10.3390/ijms19082205] [PMID: 30060531]
[29]
Menéndez-Menéndez, J; Martínez-Campa, C. Melatonin: An anti-tumor agent in hormone-dependent cancers. Int J Endocrinol., 2018, 2018, 3271948.
[http://dx.doi.org/10.1155/2018/3271948]
[30]
Najafi, M.; Salehi, E.; Farhood, B.; Nashtaei, M.S.; Hashemi Goradel, N.; Khanlarkhani, N.; Namjoo, Z.; Mortezaee, K. Adjuvant chemotherapy with melatonin for targeting human cancers: A review. J. Cell. Physiol., 2019, 234(3), 2356-2372.
[http://dx.doi.org/10.1002/jcp.27259] [PMID: 30192001]
[31]
Maroufi, N.F.; Ashouri, N.; Mortezania, Z.; Ashoori, Z.; Vahedian, V.; Amirzadeh-Iranaq, M.T.; Fattahi, A.; Kazemzadeh, H.; Bizzarri, M.; Akbarzadeh, M.; Nejabati, H.R.; Faridvand, Y.; Rashidi, M.R.; Nouri, M. The potential therapeutic effects of melatonin on breast cancer: An invasion and metastasis inhibitor. Pathol. Res. Pract., 2020, 216(10), 153226.
[http://dx.doi.org/10.1016/j.prp.2020.153226] [PMID: 32987338]
[32]
Sadoughi, F.; Maleki Dana, P.; Homayoonfal, M.; Sharifi, M.; Asemi, Z. Molecular basis of melatonin protective effects in metastasis: A novel target of melatonin. Biochimie, 2022, 202, 15-25.
[http://dx.doi.org/10.1016/j.biochi.2022.05.012] [PMID: 35636690]
[33]
Khorasanchi, A; Mukhopadhyay, N; Pandey, S; Nemani, S; Parker, GL; Urdaneta, A Melatonin supplementation for preventing cancer-related fatigue in patients receiving radiotherapy for early-stage breast cancer: A double-blind placebo-controlled phase III trial. J Clin Oncol, 2022, 40(16), e24079.
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.e24079]
[34]
Jung, J.H.; Shin, E.A.; Kim, J.H.; Sim, D.Y.; Lee, H.; Park, J.E.; Lee, H.J.; Kim, S.H. NEDD9 inhibition by miR-25-5p activation is critically involved in co-treatment of melatonin-and pterostilbene-induced apoptosis in colorectal cancer cells. Cancers, 2019, 11(11), 1684.
[http://dx.doi.org/10.3390/cancers11111684] [PMID: 31671847]
[35]
Semenov, MV; Habas, R; MacDonald, BT; He, X SnapShot: Noncanonical Wnt signaling pathways. Cell, 2007, 131(7), 1378. e1-1378. e2.
[http://dx.doi.org/10.1016/j.cell.2007.12.011]
[36]
Dijksterhuis, J.P.; Baljinnyam, B.; Stanger, K.; Sercan, H.O.; Ji, Y.; Andres, O.; Rubin, J.S.; Hannoush, R.N.; Schulte, G. Systematic mapping of WNT-FZD protein interactions reveals functional selectivity by distinct WNT-FZD pairs. J. Biol. Chem., 2015, 290(11), 6789-6798.
[http://dx.doi.org/10.1074/jbc.M114.612648] [PMID: 25605717]
[37]
Voloshanenko, O.; Gmach, P.; Winter, J.; Kranz, D.; Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. FASEB J., 2017, 31(11), 4832-4844.
[http://dx.doi.org/10.1096/fj.201700144R] [PMID: 28733458]
[38]
Vallée, A.; Vallée, J.N.; Lecarpentier, Y. PPARγ agonists: Potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol. Psychiatry, 2019, 24(5), 643-652.
[http://dx.doi.org/10.1038/s41380-018-0131-4] [PMID: 30104725]
[39]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[40]
MacDonald, B.T.; He, X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(12), a007880.
[http://dx.doi.org/10.1101/cshperspect.a007880] [PMID: 23209147]
[41]
Tolwinski, N.S.; Wehrli, M.; Rives, A.; Erdeniz, N.; DiNardo, S.; Wieschaus, E. Wg/Wnt signal can be transmitted through arrow/LRP5,6 and Axin independently of Zw3/Gsk3β activity. Dev. Cell, 2003, 4(3), 407-418.
[http://dx.doi.org/10.1016/S1534-5807(03)00063-7] [PMID: 12636921]
[42]
Li, V.S.W.; Ng, S.S.; Boersema, P.J.; Low, T.Y.; Karthaus, W.R.; Gerlach, J.P.; Mohammed, S.; Heck, A.J.R.; Maurice, M.M.; Mahmoudi, T.; Clevers, H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell, 2012, 149(6), 1245-1256.
[http://dx.doi.org/10.1016/j.cell.2012.05.002] [PMID: 22682247]
[43]
Taelman, V.F.; Dobrowolski, R.; Plouhinec, J.L.; Fuentealba, L.C.; Vorwald, P.P.; Gumper, I.; Sabatini, D.D.; De Robertis, E.M. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell, 2010, 143(7), 1136-1148.
[http://dx.doi.org/10.1016/j.cell.2010.11.034] [PMID: 21183076]
[44]
Hendriksen, J.; Jansen, M.; Brown, C.M.; van der Velde, H.; van Ham, M.; Galjart, N.; Offerhaus, G.J.; Fagotto, F.; Fornerod, M. Plasma membrane recruitment of dephosphorylated β-catenin upon activation of the Wnt pathway. J. Cell Sci., 2008, 121(11), 1793-1802.
[http://dx.doi.org/10.1242/jcs.025536] [PMID: 18460581]
[45]
Daniels, D.L.; Weis, W.I. β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol., 2005, 12(4), 364-371.
[http://dx.doi.org/10.1038/nsmb912] [PMID: 15768032]
[46]
Hao, H.X.; Jiang, X.; Cong, F. Control of Wnt receptor turnover by R-spondin-ZNRF3/RNF43 signaling module and its dysregulation in cancer. Cancers, 2016, 8(6), 54.
[http://dx.doi.org/10.3390/cancers8060054] [PMID: 27338477]
[47]
Xie, Y.; Zamponi, R.; Charlat, O.; Ramones, M.; Swalley, S.; Jiang, X.; Rivera, D.; Tschantz, W.; Lu, B.; Quinn, L.; Dimitri, C.; Parker, J.; Jeffery, D.; Wilcox, S.K.; Watrobka, M.; LeMotte, P.; Granda, B.; Porter, J.A.; Myer, V.E.; Loew, A.; Cong, F. Interaction with both ZNRF3 and LGR4 is required for the signalling activity of R-spondin. EMBO Rep., 2013, 14(12), 1120-1126.
[http://dx.doi.org/10.1038/embor.2013.167] [PMID: 24165923]
[48]
Wang, D.; Huang, B.; Zhang, S.; Yu, X.; Wu, W.; Wang, X. Structural basis for R-spondin recognition by LGR4/5/6 receptors. Genes Dev., 2013, 27(12), 1339-1344.
[http://dx.doi.org/10.1101/gad.219360.113] [PMID: 23756652]
[49]
Park, S.; Wu, L.; Tu, J.; Yu, W.; Toh, Y.; Carmon, K.S.; Liu, Q.J. Unlike LGR4, LGR5 potentiates Wnt–β-catenin signaling without sequestering E3 ligases. Sci. Signal., 2020, 13(660), eaaz4051.
[http://dx.doi.org/10.1126/scisignal.aaz4051] [PMID: 33262293]
[50]
Vermeulen, L.; De Sousa E Melo, F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz, C.; Rodermond, H.; Sprick, M.R.; Kemper, K.; Richel, D.J.; Stassi, G.; Medema, J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol., 2010, 12(5), 468-476.
[http://dx.doi.org/10.1038/ncb2048] [PMID: 20418870]
[51]
Najdi, R.; Holcombe, R.; Waterman, M. Wnt signaling and colon carcinogenesis: Beyond APC. J. Carcinog., 2011, 10(1), 5.
[http://dx.doi.org/10.4103/1477-3163.78111] [PMID: 21483657]
[52]
Loregger, A.; Grandl, M.; Mejías-Luque, R.; Allgäuer, M.; Degenhart, K.; Haselmann, V.; Oikonomou, C.; Hatzis, P.; Janssen, K.P.; Nitsche, U.; Gradl, D.; van den Broek, O.; Destree, O.; Ulm, K.; Neumaier, M.; Kalali, B.; Jung, A.; Varela, I.; Schmid, R.M.; Rad, R.; Busch, D.H.; Gerhard, M. The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated β-catenin by sequestering TCF4 to the nuclear membrane. Sci. Signal., 2015, 8(393), ra90.
[http://dx.doi.org/10.1126/scisignal.aac6757] [PMID: 26350900]
[53]
Giannakis, M.; Hodis, E.; Jasmine Mu, X.; Yamauchi, M.; Rosenbluh, J.; Cibulskis, K.; Saksena, G.; Lawrence, M.S.; Qian, Z.R.; Nishihara, R.; Van Allen, E.M.; Hahn, W.C.; Gabriel, S.B.; Lander, E.S.; Getz, G.; Ogino, S.; Fuchs, C.S.; Garraway, L.A. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet., 2014, 46(12), 1264-1266.
[http://dx.doi.org/10.1038/ng.3127] [PMID: 25344691]
[54]
Seshagiri, S.; Stawiski, E.W.; Durinck, S.; Modrusan, Z.; Storm, E.E.; Conboy, C.B.; Chaudhuri, S.; Guan, Y.; Janakiraman, V.; Jaiswal, B.S.; Guillory, J.; Ha, C.; Dijkgraaf, G.J.P.; Stinson, J.; Gnad, F.; Huntley, M.A.; Degenhardt, J.D.; Haverty, P.M.; Bourgon, R.; Wang, W.; Koeppen, H.; Gentleman, R.; Starr, T.K.; Zhang, Z.; Largaespada, D.A.; Wu, T.D.; de Sauvage, F.J. Recurrent R-spondin fusions in colon cancer. Nature, 2012, 488(7413), 660-664.
[http://dx.doi.org/10.1038/nature11282] [PMID: 22895193]
[55]
Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol., 2010, 176(6), 2911-2920.
[http://dx.doi.org/10.2353/ajpath.2010.091125] [PMID: 20395444]
[56]
Schade, B.; Lesurf, R.; Sanguin-Gendreau, V.; Bui, T.; Deblois, G.; O’Toole, S.A.; Millar, E.K.A.; Zardawi, S.J.; Lopez-Knowles, E.; Sutherland, R.L.; Giguère, V.; Kahn, M.; Hallett, M.; Muller, W.J. β-Catenin signaling is a critical event in ErbB2-mediated mammary tumor progression. Cancer Res., 2013, 73(14), 4474-4487.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3925] [PMID: 23720052]
[57]
Teng, Y.; Wang, X.; Wang, Y.; Ma, D. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem. Biophys. Res. Commun., 2010, 392(3), 373-379.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.028] [PMID: 20074550]
[58]
Staal, F.J.; Sen, J.M. The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur. J. Immunol., 2008, 38(7), 1788-1794.
[http://dx.doi.org/10.1002/eji.200738118] [PMID: 18581335]
[59]
Peterson, L.F.; Turbiak, A.J.; Giannola, D.M.; Donato, N.; Showalter, H.H.; Fearon, E.R. Wnt-pathway directed compound targets blast crisis and chronic phase CML leukemia stem progenitors. Am. Soc. Hematol., 2009.
[http://dx.doi.org/10.1182/blood.V114.22.2168.2168]
[60]
Nagaraj, A.B.; Joseph, P.; Kovalenko, O.; Singh, S.; Armstrong, A.; Redline, R.; Resnick, K.; Zanotti, K.; Waggoner, S.; DiFeo, A. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget, 2015, 6(27), 23720-23734.
[http://dx.doi.org/10.18632/oncotarget.4690] [PMID: 26125441]
[61]
Huss, S.; Nehles, J.; Binot, E.; Wardelmann, E.; Mittler, J.; Kleine, M.A.; Künstlinger, H.; Hartmann, W.; Hohenberger, P.; Merkelbach-Bruse, S.; Buettner, R.; Schildhaus, H.U. β-Catenin ( CTNNB1 ) mutations and clinicopathological features of mesenteric desmoid-type fibromatosis. Histopathology, 2013, 62(2), 294-304.
[http://dx.doi.org/10.1111/j.1365-2559.2012.04355.x] [PMID: 23020601]
[62]
Mezni, I.; Galichon, P.; Bacha, M.M.; Sfar, I.; Hertig, A.; Goucha, R.; Xu-Dubois, Y.C.; Abderrahim, E.; Gorgi, Y.; Rondeau, E.; Abdallah, T.B. The epithelial-mesenchymal transition and fibrosis of the renal transplant. Med. Sci., 2015, 31(1), 68-74.
[http://dx.doi.org/10.1051/medsci/20153101015] [PMID: 25658733]
[63]
Gonzalez, D.M.; Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal., 2014, 7(344), re8.
[http://dx.doi.org/10.1126/scisignal.2005189] [PMID: 25249658]
[64]
Long, H.; Xiang, T.; Qi, W.; Huang, J.; Chen, J.; He, L.; Liang, Z.; Guo, B.; Li, Y.; Xie, R.; Zhu, B. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition. Oncotarget, 2015, 6(8), 5846-5859.
[http://dx.doi.org/10.18632/oncotarget.3462] [PMID: 25788271]
[65]
Park, J.; Yoon, J. Schizandrin inhibits fibrosis and epithelial–mesenchymal transition in transforming growth factor-β1-stimulated AML12 cells. Int. Immunopharmacol., 2015, 25(2), 276-284.
[http://dx.doi.org/10.1016/j.intimp.2015.02.014] [PMID: 25701504]
[66]
Kim, K.K.; Kugler, M.C.; Wolters, P.J.; Robillard, L.; Galvez, M.G.; Brumwell, A.N.; Sheppard, D.; Chapman, H.A. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl. Acad. Sci., 2006, 103(35), 13180-13185.
[http://dx.doi.org/10.1073/pnas.0605669103] [PMID: 16924102]
[67]
Namba, T.; Tanaka, K-I.; Ito, Y.; Hoshino, T.; Matoyama, M.; Yamakawa, N.; Isohama, Y.; Azuma, A.; Mizushima, T. Induction of EMT-like phenotypes by an active metabolite of leflunomide and its contribution to pulmonary fibrosis. Cell Death Differ., 2010, 17(12), 1882-1895.
[http://dx.doi.org/10.1038/cdd.2010.64] [PMID: 20489727]
[68]
Yu, N.; Sun, Y.T.; Su, X.M.; He, M.; Dai, B.; Kang, J. Melatonin attenuates TGFβ1-induced epithelial-mesenchymal transition in lung alveolar epithelial cells. Mol. Med. Rep., 2016, 14(6), 5567-5572.
[http://dx.doi.org/10.3892/mmr.2016.5950] [PMID: 27878256]
[69]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[70]
Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet, 2016, 387(10022), 1012-1024.
[http://dx.doi.org/10.1016/S0140-6736(15)00055-0] [PMID: 26321262]
[71]
Lai, S-Z; Li, W-F; Chen, L; Luo, W; Chen, Y-Y; Liu, L-Z How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? Int J Radiat Oncol Biol Phys, 2011, 80(3), 661-668.
[http://dx.doi.org/10.1016/j.ijrobp.2010.03.024]
[72]
Chen, S.H.; Kuo, C.C.; Li, C.F.; Cheung, C.H.A.; Tsou, T.C.; Chiang, H.C.; Yang, Y.N.; Chang, S.L.; Lin, L.C.; Pan, H.Y.; Chang, K.Y.; Chang, J.Y. O 6-methylguanine DNA methyltransferase repairs platinum-DNA adducts following cisplatin treatment and predicts prognoses of nasopharyngeal carcinoma. Int. J. Cancer, 2015, 137(6), 1291-1305.
[http://dx.doi.org/10.1002/ijc.29486] [PMID: 25693518]
[73]
Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res., 2016, 106, 27-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.001] [PMID: 26804248]
[74]
Saurin, J.C.; Gutknecht, C.; Napoleon, B.; Chavaillon, A.; Ecochard, R.; Scoazec, J.Y.; Ponchon, T.; Chayvialle, J.A. Surveillance of duodenal adenomas in familial adenomatous polyposis reveals high cumulative risk of advanced disease. J. Clin. Oncol., 2004, 22(3), 493-498.
[http://dx.doi.org/10.1200/JCO.2004.06.028] [PMID: 14752072]
[75]
Baujat, B; Audry, H; Bourhis, J; Chan, AT; Onat, H; Chua, DT Chemotherapy in locally advanced nasopharyngeal carcinoma: An individual patient data meta-analysis of eight randomized trials and 1753 patients. Int J Radiat Oncol Biol Phys, 2006, 64(1), 47-56.
[http://dx.doi.org/10.1016/j.ijrobp.2005.06.037]
[76]
Proctor, R.N. FDA’s new plan to reduce the nicotine in cigarettes to sub-addictive levels could be a game-changer. Tob Control, 2017, 26(5), 487-488.
[http://dx.doi.org/10.1136/tobaccocontrol-2017-053978]
[77]
Lam, W.K.J.; Jiang, P.; Chan, K.C.A.; Peng, W.; Shang, H.; Heung, M.M.S.; Cheng, S.H.; Zhang, H.; Tse, O.Y.O.; Raghupathy, R.; Ma, B.B.Y.; Hui, E.P.; Chan, A.T.C.; Woo, J.K.S.; Chiu, R.W.K.; Lo, Y.M.D. Methylation analysis of plasma DNA informs etiologies of Epstein-Barr virus-associated diseases. Nat. Commun., 2019, 10(1), 3256.
[http://dx.doi.org/10.1038/s41467-019-11226-5] [PMID: 31332191]
[78]
Liu, R.Y.; Dong, Z.; Liu, J.; Zhou, L.; Huang, W.; Khoo, S.K.; Zhang, Z.; Petillo, D.; Teh, B.T.; Qian, C.N.; Zhang, J.T. Overexpression of asparagine synthetase and matrix metalloproteinase 19 confers cisplatin sensitivity in nasopharyngeal carcinoma cells. Mol. Cancer Ther., 2013, 12(10), 2157-2166.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1190] [PMID: 23956056]
[79]
Zhang, J.; Xie, T.; Zhong, X.; Jiang, H.L.; Li, R.; Wang, B.Y.; Huang, X.T.; Cen, B.H.; Yuan, Y.W. Melatonin reverses nasopharyngeal carcinoma cisplatin chemoresistance by inhibiting the Wnt/β-catenin signaling pathway. Aging, 2020, 12(6), 5423-5438.
[http://dx.doi.org/10.18632/aging.102968] [PMID: 32203052]
[80]
Lobo, N.; Afferi, L.; Moschini, M.; Mostafid, H.; Porten, S.; Psutka, S.P.; Gupta, S.; Smith, A.B.; Williams, S.B.; Lotan, Y. Epidemiology, screening, and prevention of bladder cancer. Eur. Urol. Oncol., 2022, 5(6), 628-639.
[http://dx.doi.org/10.1016/j.euo.2022.10.003] [PMID: 36333236]
[81]
Xu, X.S.; Wang, L.; Abrams, J.; Wang, G. Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer. J. Hematol. Oncol., 2011, 4(1), 17.
[http://dx.doi.org/10.1186/1756-8722-4-17] [PMID: 21507255]
[82]
Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers, 2017, 3(1), 17022.
[http://dx.doi.org/10.1038/nrdp.2017.22] [PMID: 28406148]
[83]
Birkenkamp-Demtröder, K.; Christensen, E.; Nordentoft, I.; Knudsen, M.; Taber, A.; Høyer, S.; Lamy, P.; Agerbæk, M.; Jensen, J.B.; Dyrskjøt, L. Monitoring treatment response and metastatic relapse in advanced bladder cancer by liquid biopsy analysis. Eur. Urol., 2018, 73(4), 535-540.
[http://dx.doi.org/10.1016/j.eururo.2017.09.011] [PMID: 28958829]
[84]
Cai, Z.; Zhang, F.; Chen, W.; Zhang, J.; Li, H. miRNAs: A promising target in the chemoresistance of bladder cancer. OncoTargets Ther., 2020, 12, 11805-11816.
[http://dx.doi.org/10.2147/OTT.S231489] [PMID: 32099386]
[85]
Michaelis, M.; Doerr, H.; Cinatl, J., Jr Valproic acid as anti-cancer drug. Curr. Pharm. Des., 2007, 13(33), 3378-3393.
[http://dx.doi.org/10.2174/138161207782360528] [PMID: 18045192]
[86]
Liu, S.; Liang, B.; Jia, H.; Jiao, Y.; Pang, Z.; Huang, Y. Evaluation of cell death pathways initiated by antitumor drugs melatonin and valproic acid in bladder cancer cells. FEBS Open Bio, 2017, 7(6), 798-810.
[http://dx.doi.org/10.1002/2211-5463.12223] [PMID: 28593135]
[87]
Gu, Q.; Luo, Y.; Chen, C.; Jiang, D.; Huang, Q.; Wang, X. GREM1 overexpression inhibits proliferation, migration and angiogenesis of osteosarcoma. Exp. Cell Res., 2019, 384(1), 111619.
[http://dx.doi.org/10.1016/j.yexcr.2019.111619] [PMID: 31525341]
[88]
Mirabello, L.; Troisi, R.J.; Savage, S.A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer, 2009, 125(1), 229-234.
[http://dx.doi.org/10.1002/ijc.24320] [PMID: 19330840]
[89]
Li, L.; Wang, X.; Liu, D. MicroRNA-185 inhibits proliferation, migration and invasion in human osteosarcoma MG63 cells by targeting vesicle-associated membrane protein 2. Gene, 2019, 696, 80-87.
[http://dx.doi.org/10.1016/j.gene.2019.01.034] [PMID: 30721745]
[90]
Zhang, Z.F.; Xu, H.H.; Hu, W.H.; Hu, T.Y.; Wang, X.B. LINC01116 promotes proliferation, invasion and migration of osteosarcoma cells by silencing p53 and EZH2. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 6813-6823.
[PMID: 31486480]
[91]
Liu, K.; Hou, Y.; Liu, Y.; Zheng, J. LncRNA SNHG15 contributes to proliferation, invasion and autophagy in osteosarcoma cells by sponging miR-141. J. Biomed. Sci., 2017, 24(1), 46.
[http://dx.doi.org/10.1186/s12929-017-0353-9] [PMID: 28720111]
[92]
Chiappetta, C.; Carletti, R.; Della Rocca, C.; Di Cristofano, C. KMT2C modulates migration and invasion processes in osteosarcoma cell lines. Pathol. Res. Pract., 2019, 215(10), 152534.
[http://dx.doi.org/10.1016/j.prp.2019.152534] [PMID: 31337554]
[93]
Wang, X.; Hu, K.; Chao, Y.; Wang, L. LncRNA SNHG16 promotes proliferation, migration and invasion of osteosarcoma cells by targeting miR-1301/BCL9 axis. Biomed. Pharmacother., 2019, 114, 108798.
[http://dx.doi.org/10.1016/j.biopha.2019.108798] [PMID: 30909141]
[94]
Carina, V.; Costa, V.; Sartori, M.; Bellavia, D.; De Luca, A.; Raimondi, L.; Fini, M.; Giavaresi, G. Adjuvant biophysical therapies in osteosarcoma. Cancers, 2019, 11(3), 348.
[http://dx.doi.org/10.3390/cancers11030348] [PMID: 30871044]
[95]
Li, Y.; Zou, J.; Li, B.; Du, J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/β-catenin signalling pathway in human osteosarcoma cells. J. Cell. Mol. Med., 2021, 25(20), 9543-9556.
[http://dx.doi.org/10.1111/jcmm.16894] [PMID: 34547170]
[96]
Ou, T.; Lilly, M.; Jiang, W. The pathologic role of toll-like receptor 4 in prostate cancer. Front. Immunol., 2018, 9, 1188.
[http://dx.doi.org/10.3389/fimmu.2018.01188] [PMID: 29928275]
[97]
Hsu, R.Y.C.; Chan, C.H.F.; Spicer, J.D.; Rousseau, M.C.; Giannias, B.; Rousseau, S.; Ferri, L.E. LPS-induced TLR4 signaling in human colorectal cancer cells increases β1 integrin-mediated cell adhesion and liver metastasis. Cancer Res., 2011, 71(5), 1989-1998.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2833] [PMID: 21363926]
[98]
Li, J.; Yin, J.; Shen, W.; Gao, R.; Liu, Y.; Chen, Y.; Li, X.; Liu, C.; Xiang, R.; Luo, N. TLR4 promotes breast cancer metastasis via Akt/GSK3β/β-catenin pathway upon LPS stimulation. Anat. Rec., 2017, 300(7), 1219-1229.
[http://dx.doi.org/10.1002/ar.23590] [PMID: 28296189]
[99]
Song, W.; Tiruthani, K.; Wang, Y.; Shen, L.; Hu, M.; Dorosheva, O.; Qiu, K.; Kinghorn, K.A.; Liu, R.; Huang, L. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater., 2018, 30(52), 1805007.
[http://dx.doi.org/10.1002/adma.201805007] [PMID: 30387230]
[100]
Mittal, V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol., 2018, 13(1), 395-412.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043854] [PMID: 29414248]
[101]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[102]
Murillo-Garzón, V.; Kypta, R. WNT signalling in prostate cancer. Nat. Rev. Urol., 2017, 14(11), 683-696.
[http://dx.doi.org/10.1038/nrurol.2017.144] [PMID: 28895566]
[103]
Marques, R.B.; Aghai, A.; de Ridder, C.M.A.; Stuurman, D.; Hoeben, S.; Boer, A.; Ellston, R.P.; Barry, S.T.; Davies, B.R.; Trapman, J.; van Weerden, W.M. High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer preclinical models. Eur. Urol., 2015, 67(6), 1177-1185.
[http://dx.doi.org/10.1016/j.eururo.2014.08.053] [PMID: 25220373]
[104]
Barton, B.E.; Karras, J.G.; Murphy, T.F.; Barton, A.; Huang, H.F.S. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther., 2004, 3(1), 11-20.
[http://dx.doi.org/10.1158/1535-7163.11.3.1] [PMID: 14749471]
[105]
Tian, Q.X.; Zhang, Z.H.; Ye, Q.L.; Xu, S.; Hong, Q.; Xing, W.Y.; Chen, L.; Yu, D.X.; Xu, D.X.; Xie, D.D. Melatonin inhibits migration and invasion in LPS-stimulated and-unstimulated prostate cancer cells through blocking multiple EMT-relative pathways. J. Inflamm. Res., 2021, 14, 2253-2265.
[http://dx.doi.org/10.2147/JIR.S305450] [PMID: 34079331]
[106]
Reya, T; Morrison, SJ; Clarke, MF; Weissman, IL Stem cells, cancer, and cancer stem cells. Nature., 2001, 414(6859), 105-111.
[http://dx.doi.org/10.1038/35102167]
[107]
Sokolov, D.; Sharda, N.; Giri, B.; Hassan, M.S.; Singh, D.; Tarasiewicz, A.; Lohr, C.; von Holzen, U.; Kristian, T.; Waddell, J.; Reiter, R.J.; Ahmed, H.; Banerjee, A. Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta-catenin signaling. J. Pineal Res., 2022, 73(1), e12808.
[http://dx.doi.org/10.1111/jpi.12808] [PMID: 35619550]
[108]
Shah, M.A. Update on metastatic gastric and esophageal cancers. J. Clin. Oncol., 2015, 33(16), 1760-1769.
[http://dx.doi.org/10.1200/JCO.2014.60.1799] [PMID: 25918288]
[109]
Yonemura, Y.; Bandou, E.; Kinoshita, K.; Kawamura, T.; Takahashi, S.; Endou, Y.; Sasaki, T. Effective therapy for peritoneal dissemination in gastric cancer. Surg. Oncol. Clin. N. Am., 2003, 12(3), 635-648.
[http://dx.doi.org/10.1016/S1055-3207(03)00035-8] [PMID: 14567022]
[110]
Kurashige, J.; Mima, K.; Sawada, G.; Takahashi, Y.; Eguchi, H.; Sugimachi, K.; Mori, M.; Yanagihara, K.; Yashiro, M.; Hirakawa, K.; Baba, H.; Mimori, K. Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis, 2015, 36(1), 133-141.
[http://dx.doi.org/10.1093/carcin/bgu232] [PMID: 25411357]
[111]
Liu, S.H.; Lee, W.J.; Lai, D.W.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Chiu, C.S.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; Pan, H.C.; Sheu, M.L. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol. Oncol., 2015, 9(4), 834-849.
[http://dx.doi.org/10.1016/j.molonc.2014.12.009] [PMID: 25619450]
[112]
Lai, D.W.; Liu, S.H.; Karlsson, A.I.; Lee, W.J.; Wang, K.B.; Chen, Y.C.; Shen, C.C.; Wu, S.M.; Liu, C.Y.; Tien, H.R.; Peng, Y.C.; Jan, Y.J.; Chao, T.H.; Lan, K.H.; Arbiser, J.L.; Sheu, M.L. The novel Aryl hydrocarbon receptor inhibitor biseugenol inhibits gastric tumor growth and peritoneal dissemination. Oncotarget, 2014, 5(17), 7788-7804.
[http://dx.doi.org/10.18632/oncotarget.2307] [PMID: 25226618]
[113]
Pan, H.C.; Lai, D.W.; Lan, K.H.; Shen, C.C.; Wu, S.M.; Chiu, C.S.; Wang, K.B.; Sheu, M.L. Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model. Carcinogenesis, 2013, 34(11), 2568-2579.
[http://dx.doi.org/10.1093/carcin/bgt243] [PMID: 23828905]
[114]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Woude, G.V. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[http://dx.doi.org/10.1038/nrc3205] [PMID: 22270953]
[115]
Craene, B.D.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer, 2013, 13(2), 97-110.
[http://dx.doi.org/10.1038/nrc3447] [PMID: 23344542]
[116]
Onder, T.T.; Gupta, P.B.; Mani, S.A.; Yang, J.; Lander, E.S.; Weinberg, R.A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res., 2008, 68(10), 3645-3654.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2938] [PMID: 18483246]
[117]
Padmanaban, V.; Krol, I.; Suhail, Y.; Szczerba, B.M.; Aceto, N.; Bader, J.S.; Ewald, A.J. E-cadherin is required for metastasis in multiple models of breast cancer. Nature, 2019, 573(7774), 439-444.
[http://dx.doi.org/10.1038/s41586-019-1526-3] [PMID: 31485072]
[118]
Lee, C.C.; Yang, W.H.; Li, C.H.; Cheng, Y.W.; Tsai, C.H.; Kang, J.J. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4. Cancer Lett., 2016, 376(2), 211-217.
[http://dx.doi.org/10.1016/j.canlet.2016.03.052] [PMID: 27060206]
[119]
Kanda, M.; Kodera, Y. Molecular mechanisms of peritoneal dissemination in gastric cancer. World J. Gastroenterol., 2016, 22(30), 6829-6840.
[http://dx.doi.org/10.3748/wjg.v22.i30.6829] [PMID: 27570420]
[120]
Wu, S.M.; Lin, W.Y.; Shen, C.C.; Pan, H.C.; Keh-Bin, W.; Chen, Y.C.; Jan, Y.J.; Lai, D.W.; Tang, S.C.; Tien, H.R.; Chiu, C.S.; Tsai, T.C.; Lai, Y.L.; Sheu, M.L. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBP β and NF κ B cleavage. J. Pineal Res., 2016, 60(2), 142-154.
[http://dx.doi.org/10.1111/jpi.12295] [PMID: 26514342]
[121]
Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M.J. Cancer statistics, 2007. CA Cancer J. Clin., 2007, 57(1), 43-66.
[http://dx.doi.org/10.3322/canjclin.57.1.43] [PMID: 17237035]
[122]
Huang, C.Y.; Fong, Y.C.; Lee, C.Y.; Chen, M.Y.; Tsai, H.C.; Hsu, H.C.; Tang, C.H. CCL5 increases lung cancer migration via PI3K, Akt and NF-κB pathways. Biochem. Pharmacol., 2009, 77(5), 794-803.
[http://dx.doi.org/10.1016/j.bcp.2008.11.014] [PMID: 19073147]
[123]
Lu, T.; Yang, X.; Huang, Y.; Zhao, M.; Li, M.; Ma, K.; Yin, J.; Zhan, C.; Wang, Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag. Res., 2019, 11, 943-953.
[http://dx.doi.org/10.2147/CMAR.S187317] [PMID: 30718965]
[124]
Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One, 2018, 13(7), e0200721.
[http://dx.doi.org/10.1371/journal.pone.0200721] [PMID: 30052644]
[125]
Esendagli, D.; Gunel-Ozcan, A. From stem cell biology to the treatment of lung diseases. Curr. Stem Cell Res. Ther., 2017, 12(6), 493-505.
[PMID: 28545380]
[126]
Bertolini, G.; Roz, L.; Perego, P.; Tortoreto, M.; Fontanella, E.; Gatti, L.; Pratesi, G.; Fabbri, A.; Andriani, F.; Tinelli, S.; Roz, E.; Caserini, R.; Lo Vullo, S.; Camerini, T.; Mariani, L.; Delia, D.; Calabrò, E.; Pastorino, U.; Sozzi, G. Highly tumorigenic lung cancer CD133 + cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci., 2009, 106(38), 16281-16286.
[http://dx.doi.org/10.1073/pnas.0905653106] [PMID: 19805294]
[127]
Doherty, M.; Smigiel, J.; Junk, D.; Jackson, M. Cancer stem cell plasticity drives therapeutic resistance. Cancers, 2016, 8(1), 8.
[http://dx.doi.org/10.3390/cancers8010008] [PMID: 26742077]
[128]
Alamgeer, M.; Peacock, C.D.; Matsui, W.; Ganju, V.; Watkins, D.N. Cancer stem cells in lung cancer: Evidence and controversies. Respirology, 2013, 18(5), 757-764.
[http://dx.doi.org/10.1111/resp.12094] [PMID: 23586700]
[129]
Yang, Y.C.; Chiou, P.C.; Chen, P.C.; Liu, P.Y.; Huang, W.C.; Chao, C.C.; Tang, C.H. Melatonin reduces lung cancer stemness through inhibiting of PLC, ERK, p38, β-catenin, and Twist pathways. Environ. Toxicol., 2019, 34(2), 203-209.
[http://dx.doi.org/10.1002/tox.22674] [PMID: 30421542]
[130]
Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet, 2014, 384(9951), 1376-1388.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7] [PMID: 24767708]
[131]
Huang, T.; Poole, E.M.; Okereke, O.I.; Kubzansky, L.D.; Eliassen, A.H.; Sood, A.K.; Wang, M.; Tworoger, S.S. Depression and risk of epithelial ovarian cancer: Results from two large prospective cohort studies. Gynecol. Oncol., 2015, 139(3), 481-486.
[http://dx.doi.org/10.1016/j.ygyno.2015.10.004] [PMID: 26449316]
[132]
Krizanova, O.; Babula, P.; Pacak, K. Stress, catecholaminergic system and cancer. Stress, 2016, 19(4), 419-428.
[http://dx.doi.org/10.1080/10253890.2016.1203415] [PMID: 27398826]
[133]
Lutgendorf, S.K.; Cole, S.; Costanzo, E.; Bradley, S.; Coffin, J.; Jabbari, S.; Rainwater, K.; Ritchie, J.M.; Yang, M.; Sood, A.K. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin. Cancer Res., 2003, 9(12), 4514-4521.
[PMID: 14555525]
[134]
Choi, M.J.; Cho, K.H.; Lee, S.; Bae, Y.J.; Jeong, K.J.; Rha, S.Y.; Choi, E.J.; Park, J.H.; Kim, J.M.; Lee, J-S.; Mills, G.B.; Lee, H.Y. hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene, 2015, 34(26), 3402-3412.
[http://dx.doi.org/10.1038/onc.2014.270] [PMID: 25151968]
[135]
Kang, Y.; Nagaraja, A.S.; Armaiz-Pena, G.N.; Dorniak, P.L.; Hu, W.; Rupaimoole, R.; Liu, T.; Gharpure, K.M.; Previs, R.A.; Hansen, J.M.; Rodriguez-Aguayo, C.; Ivan, C.; Ram, P.; Sehgal, V.; Lopez-Berestein, G.; Lutgendorf, S.K.; Cole, S.W.; Sood, A.K. Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer. Clin. Cancer Res., 2016, 22(7), 1713-1724.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1275] [PMID: 26581245]
[136]
Armaiz-Pena, G.N.; Cole, S.W.; Lutgendorf, S.K.; Sood, A.K. Neuroendocrine influences on cancer progression. Brain Behav. Immun., 2013, 30(S1), S19-S25.
[http://dx.doi.org/10.1016/j.bbi.2012.06.005] [PMID: 22728325]
[137]
Jiang, S.H.; Zhang, X.X.; Hu, L.P.; Wang, X.; Li, Q.; Zhang, X.L.; Li, J.; Gu, J.R.; Zhang, Z.G. Systemic regulation of cancer development by neuro-endocrine-immune signaling network at multiple levels. Front. Cell Dev. Biol., 2020, 8, 586757.
[http://dx.doi.org/10.3389/fcell.2020.586757] [PMID: 33117814]
[138]
Bu, S.; Wang, Q.; Sun, J.; Li, X.; Gu, T.; Lai, D. Melatonin suppresses chronic restraint stress-mediated metastasis of epithelial ovarian cancer via NE/AKT/β-catenin/SLUG axis. Cell Death Dis., 2020, 11(8), 644.
[http://dx.doi.org/10.1038/s41419-020-02906-y] [PMID: 32811805]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy