(+1 to Ian's answer, read that first) I'd like to point out a limitation that perhaps is under-appreciated in this and many RNAseq experiments, bulk or single-cell.
If you decide to have 2 or 3 replicates per condition you are implicitly making strong assumptions about the variability within and between conditions. Specifically, you assume that variability within condition is so low to be swamped by the between-condition effects. Alternatively, you are in the position to know whether a sample is acceptable for further analyses and you have a good sense of what reliable results should look like. For example, you have marker genes that indicate a given sample is behaving as expected and the output of differential expression can be well explained by background information. If you are willing to make these assumptions, it is unlikely that you will be overly worried by technical batch effects.
An extreme example to make the point: If you assign 3 random people to "control" and 3 to "treatment", a batch effect due to, say, sequencing platform is the least of your concerns. There are good chances that the three controls are all males and the treatments are all females, or three children vs three adults, or... you name it. The DGE machinery will do its job and give you differentially expressed genes, but unless you make the assumptions above the results will be dubious. Otherwise, increase your sample sizes and randomization will break these spurious links.
Incidentally, this is the reason why I'm not too outraged by experiments without replicates. If you are ok with 2 replicates you are already making assumption that also apply to single-replicate experiments. Two replicates enable the mathematical machinery but strong limitations still apply. (Anyway, aren't many scRNAseq experiments done without replication? And doesn't the integration step prevents following steps from accounting for sample variability? Disclaimer: I don't have much hands-on experience with scRNAseq).
It goes without saying that the more samples the better, 2 replicates are better (much better) than 1, and batch effects should be avoided or at least accounted for. However, I feel a bit uneasy when I hear categorical statements such that batch effects or no replication make an experiment useless. The risk with this message is that if you do have 2 or 3 replicates and no (known) batch effect you feel you are all good and go to over-interpret results.
I'm going to assume "Susceptible" samples are the control, but you have not explained this. My understanding is S1-3 were sequenced together, and L1-9 and P-19 were sequenced together. I have a few questions:
To me, it looks like your susceptible samples have a magnitude more reads than treatments, but this is only from seeing the first 10 transcripts, so I it's just a guess.
Greetings, and thank you for your answer.
Indeed. Susceptible S1-3 are the control. Sorry for not be clear about it.
Thank you
I would still try looking at presence/absence PCA, and randomly down-sampling read pairs to the mean number of reads in the treatments and repeating both PCAs.
It's likely you still won't be able to identify if this is real or batch-effect because the batch-effect would be nested in treatment vs controls. But everything I've highlighted is explained in more detail below.