IES Blog

Institute of Education Sciences

Celebrate LGBTQ+ Pride Month With NCES

Sexual minorities are people whose sexual orientation is something other than straight or heterosexual.

Gender minorities are people whose sex as recorded at birth is different from their gender.

June is LGBTQ+ Pride Month, and NCES is proud to share some of the work we have undertaken to collect data on the characteristics and well-being of sexual and gender minority (SGM) people. Inclusion of questions about sexual orientation and gender identity on federal surveys allows for a better understanding of SGM people relative to the general population. These questions generate data to inform the development of resources and interventions to better serve the SGM community. Giving respondents the opportunity to describe themselves and bring their “whole self” to a questionnaire also helps them to be more fully seen and heard by researchers and policymakers.

Sometimes, we get asked why questions like this appear on education surveys. They can be sensitive questions for some people, after all. We ask these questions so we can better understand educational equity and outcomes for SGM people, just as we do for other demographic groups, such as those defined by race, ethnicity, household income, and region of the country. Just as is the case for other demographic groups, it is possible that SGM people have unique experiences compared with students and educators from other demographic groups.

Over the past 10 years, NCES has researched how to best ask respondents about their sexual orientation and gender identity, how respondents react to these questions, and what the quality of the data is that NCES has collected in questionnaires and datasets that include sexual orientation and gender identity information.

Several NCES studies include background questions for adults about their sexual orientation and gender identity, including the High School Longitudinal Study of 2009 (HSLS:09) Second Follow-up in 2016, the Baccalaureate and Beyond Longitudinal Study (B&B) 08/18 and 16/21 collections, the National Postsecondary Student Aid Study (NPSAS) in 2020, the Beginning Postsecondary Students Longitudinal Study (BPS) 20/22 and 20/25 collections, and the 2023–24 National Teacher and Principal Survey. In addition, the School Crime Supplement (SCS) to the National Crime Victimization Survey (NCVS), conducted by the Bureau of Justice Statistics and sponsored by NCES, asks students several questions pertinent to SGM experiences. For example, the SCS asks students whether they were bullied due to their gender or sexual orientation and whether they experienced hate speech related to their gender or sexual orientation. As participants in the NCVS, students ages 16 and older who respond to the SCS also report their gender identity and sexual orientation. Collectively, these data allow NCES to describe the experiences of students who identify as sexual and gender minorities.

  • As of 2021, 2009 ninth-graders who were bisexual and questioning left postsecondary education without degrees or credentials at higher rates than other groups of students who were in ninth grade in 2009, and they earned bachelor’s or higher degrees at lower rates than other students.1
     
  • In 2020, some 9 percent of students who identified as genderqueer, gender nonconforming, or a different identity had difficulty finding safe and stable housing, which is the three times the rate of students who identified as male or female (3 percent each).2
     
  • In 2018, about 10 years after completing a 2007–08 bachelor’s degree, graduates who were gender minorities3 described their financial situations. Graduates who were gender minorities were less likely to own a home (31 percent) or hold a retirement account (74 percent) than graduates who were not gender minorities (63 percent and 87 percent, respectively).4
     
  • Among 2008 bachelor’s degree graduates with a full-time job in 2018, those who were straight people reported higher average salaries than those who were either lesbian/gay or bisexual.    
     
  • In the 2017–18 school year, 18 percent of public schools had a recognized student group that promoted the acceptance of students’ sexual orientation and gender identity, such as a Gay-Straight Alliance (GSA). This was an increase from the 2015–16 school year, in which 12 percent of schools reported having a GSA.5|
     
  • Among all students ages 12–18 in grades 6–12 who reported being bullied (19 percent), the percentage who reported being bullied due to their sexual orientation more than doubled from 2017 (4 percent) to 2022 (9 percent).6 That change was primarily driven by female students, for whom the percentage tripled from 2017 to 2022 (from 4 to 13 percent), while the percentage of bullied males who reported being bullied for their sexual orientation was not statistically significantly different across the period (3 percent in 2017 and 4 percent in 2022).

Figure 1. Among students ages 12–18 enrolled in grades 6–12 who reported being bullied, percentage who reported that they thought the bullying was related to their sexual orientation: 2017, 2019, and 2022

! Standard error for this estimate is 30 to 50 percent of the estimate’s value.

* Statistically significantly different (p < .05) from 2022. 


NCES is committed to collecting data about equity in education and describing the experiences of all students and educators, including SGM people.

To learn more about the research conducted at NCES and across the federal statistical system on the measurement of sexual orientation and gender identity, visit nces.ed.gov/FCSM/SOGI.asp.

Plus, be sure to follow NCES on XFacebookLinkedIn, and YouTube and subscribe to the NCES News Flash to stay informed when resources with SGM data are released.

 

By Elise Christopher, Maura Spiegelman, and Michael McGarrah, NCES


[1] SOURCE: Christopher, E. M. (2024). Disparities in postsecondary outcomes for LGBTQ+ individuals:
New evidence from the High School Longitudinal Study of 2009. Presented at the American Education Research Association Annual Meeting, Philadelphia, PA.

[2] SOURCE: U.S. Department of Education, National Center for Education Statistics, 2019–20 National Postsecondary Student Aid Study (NPSAS:20, preliminary data)

[3] On the NCES surveys mentioned above, gender identity categories include male; female; transgender, male-to-female; transgender, female-to-male; genderqueer or gender nonconforming; a different gender identity; and more than one gender identity.

[4] SOURCE: U.S. Department of Education, National Center for Education Statistics, 2008/18 Baccalaureate and Beyond Longitudinal Study (B&B:08/18).

[5] SOURCE: U.S. Department of Education, National Center for Education Statistics, 2015–16 and 2017–18 School Survey on Crime and Safety (SSOCS).

[6] SOURCE: U.S. Department of Education, National Center for Education Statistics, 2017, 2019, and 2022 School Crime Supplement (SCS) to the National Crime Victimization Survey (NCVS)

 

IES is Investing in Research on Innovative Financial Aid Programs in Five States

State financial aid programs have the potential to substantially augment the support that students receive from the federal Pell Grant. Federal programs, most notably the Federal Pell Grant program, have historically played the lead role of providing a solid foundation of financial support to students, with states playing the supporting role of providing additional aid to students who meet specific eligibility requirements. In recent years, states have moved to innovate their financial aid programs in ways that have the potential to increase total aid packages, meet a wider range of needs, and serve a broader population of students. The effects of these recent innovations are mostly unknown yet of great interest to state legislators and policymakers. To address this issue, IES is funding a set of five research projects that assess the scope and effects of innovative financial aid programs in California, Connecticut, Michigan, Tennessee, and Washington state. This blog describes how the five projects are contributing to the evidence base.

State financial aid program eligibility rules differ in ways that can substantially alter total aid awards, the scope of the population that can be served, and the ways in which students can use aid funds to meet their various needs while enrolled in college. For example, one key policy attribute that affects the total aid award is whether awards are calculated independently of the Pell Grant­–as “first-dollar” awards that add to the Pell award if state eligibility requirements are met– or as “last-dollar” awards that supplement Pell awards conditional upon eligibility and appropriate-use requirements. Policies including an eligibility requirement for recent high school graduation within the state tend to limit aid access for older and returning students. In addition, financial need requirements can limit or broaden the pool of eligible recipients, depending on family income thresholds. Policies that require completion of the federal FAFSA Form without offering an alternative state application tend to close off access to aid for undocumented immigrants. Merit and high school GPA requirements can close off aid access to students who are otherwise ready for college. Moreover, appropriate-use requirements in some states limit aid usage to tuition and registration expenses while other states allow aid usage for living expenses such as housing and transportation.

Given these variations in program eligibility rules, state officials want to know if their aid programs are reaching targeted student groups, meeting their needs in ways that allow them to focus on their studies, and making a difference in their academic and subsequent labor market outcomes. In an effort to support decision making, IES is funding five projects that are each working closely with state officials to understand the features of their programs and conducting research to assess which students are accessing the programs, the extent of support provided by the programs, and their effects on enrollment in and progression through college. Below is the list of the IES-funded projects.

We are excited to fund these projects and look forward to the findings they will be sharing, starting in fall 2024.


This blog was written by James Benson (James.Benson@ed.gov), program officer in the Policy and Systems team at NCER.

Leveraging Multiple Funding Sources to Train Special Education Researchers: Part 2

This blog is part of a series that highlights the experiences of graduate students in special education research who receive funding through the Department of Education. In the initial blog, two doctoral students shared their experiences with training opportunities made possible through OSEP and NCSER funding. For this second blog, we interviewed two additional scholars and included varying OSEP training mechanisms funded under the Personnel Development to Improve Services and Results Program, including the Preparation of Special Education, Early Intervention, and Related Services Leadership Personnel grant program (ALN 84.325D) and the National Center for Leadership in Intensive Intervention funded under the Doctoral Training Consortia Associated With High-Intensity Needs grant program (ALN 84.325). We asked them to discuss their experiences as OSEP Scholars, their work on NCSER-funded research grants, and how both opportunities prepare them to conduct research in special education.

Nathan Speer, University of Nebraska-Lincoln

Headshot of Nathan Speer

I have had a great experience as an OSEP Scholar! From the beginning, I was excited about the opportunity to pursue a PhD in special education intervention design, an area I have always been interested in as a professional educator. The funding and support I receive is comprehensive and practical. The OSEP-funded Research Interventions in Special Education (RISE) project funds my tuition, pays a non-work stipend, provides support for expenses associated with completing my degree program (including books, supplies, travel for required meetings or conferences), and helps with research by providing technology, software, and dissertation support.

I have been working on the IES-funded WORDS (Workshop on Reading Development Strategies) for Pandemic Recovery in Nebraska project for approximately a year. The research focuses on investigating the efficacy of professional development intended to aid teachers in implementing a tier 2 reading intervention for students in kindergarten through third grade who are at risk for reading disabilities. For the project, my roles are primarily conducting data analysis and coding. These two experiences have worked well in tandem. I have been able to attend several conferences and trainings thanks to the RISE grant that have positively impacted my work on WORDS, and my work with WORDS has provided me with an opportunity to participate in serious research as a PhD student.

Both experiences are helping me work towards a leadership role in academia and research in special education! WORDS provides me with experience participating in impactful research and RISE provides countless opportunities to learn and grow as an educator and build a professional network both on campus and in my field of interest. In the future, I hope to work in academia, preferably as a professor of practice working with undergraduate and graduate educators in special education. More specifically, I would like to focus my research and instruction on behavior (for example, applied behavior analysis, functional analysis, and behavior intervention planning).

Blair Payne, University of Texas, Austin

Headshot of Blair Payne

The National Center for Leadership in Intensive Intervention-2 (NCLII-2) training grant prepares special education leaders to have expertise in supporting students with complex and comorbid learning disabilities and behavior disorders. As a cohort of scholars, we meet two to three times a year for small conferences, which are centered around topics such as preparing for the job market, supporting education policy, or conducting and disseminating research. NCLII-2 provides scholars with tuition to one of the universities in the consortium, travel funds, and funding for our dissertation or a small research project. During our meetings, we can meet faculty and students from other universities to create mentorship or collaboration opportunities. 

Over the past 4 years, I've had the privilege of working on three IES-funded research studies. The project on which I have worked the longest is Developing an Instructional Leader Adaptive Intervention Model (AIM) for Supporting Teachers as They Integrate Evidence-Based Adolescent Literacy Practices School-Wide (Project AIM). Project AIM is a partnership with Dr. Jade Wexler at University of Maryland and Dr. Elizabeth Swanson at University of Texas, Austin. As the Texas project coordinator, I have supported material creation, educator training, test administration, recruitment, data preparation, and dissemination. Since the grant is a development grant, it has been a remarkable experience to learn the boots-on-the-ground requirements of working in schools.

My work as an OSEP Scholar has provided me with the background knowledge that I need to conduct research. Through my work on IES grants, I can use this background knowledge to support project implementation. Both funding sources work together, hand-in-hand, and I am incredibly grateful that I have been able to learn so much from both experiences.

My future goal is to work at a research university as a faculty member. Through my IES work, I am getting direct experience on how to implement school-level research. I hope to one day support schools through this research, and when I do, I'll be able to lean on my experiences from various IES projects to support this endeavor. My experience as an OSEP Scholar supports this goal by building foundational knowledge of special education research, which is instrumental to take into a faculty position in which I may wear many hats for a department. The NCLII-2 grant has helped to ensure that the graduates of the training grant are prepared to enter the field of special education with up-to-date knowledge from the field. As future faculty, we will enter the field ready to prepare the next generation of teachers and providers and build their capacity to serve and support children with disabilities and their families.

While OSEP and NCSER are separate funding mechanisms, they can be leveraged to work synergistically by providing student scholars a comprehensive research experience that includes training in research methodologies and opportunities to apply this knowledge within current research projects. Thank you to Nathan and Blair for sharing their experiences as OSEP Scholars working with research supported by NCSER. NCSER looks forward to seeing the future impact you will have in your field!

This blog was written by Shanna Bodenhamer, virtual student federal service intern at NCSER and doctoral candidate at Texas A&M University. Shanna is also an OSEP Scholar through RISE.

Celebrating the ECLS-K:2024: Participating Children Are the Key to Increasing Our Knowledge of Children’s Education and Development Today

As we highlighted in our March blog post, NCES is excited to be in the field for the base-year data collection of our newest national early childhood study, the Early Childhood Longitudinal Study, Kindergarten Class of 2023–24 (ECLS-K:2024). Although the study collects much needed data from a variety of adult respondents (i.e., parents/guardians, teachers, and school administrators), the heart of the ECLS-K:2024 is our data collection with the participating children.

With the permission of their parent/guardian, the children take part in the ECLS-K:2024 child session activities, answering engaging, age-appropriate reading and math questions during one-on-one sessions with trained ECLS-K:2024 team members (watch an example of children participating in the child activities). These ECLS-K:2024 child sessions are planned for every currently expected round of data collection, starting with the fall and spring of the current school year (2023–24) when the children are in kindergarten.

Although the child sessions look pretty similar every year, there are some changes to the activities as the children age. For example, in kindergarten and first grade, we include memory-related items in the sessions; we then swap out these items for child surveys in the later rounds, when children are in higher grades. In prior ECLS kindergarten cohort studies, child surveys included items on topics such as children’s sense of school belonging; worry or stress about school; media usage; and peer relationships. Explore the items we asked in the child surveys in the ECLS-K:2024’s sister studies, the ECLS-K and ECLS-K:2011. Many of these items will likely be asked again of the children participating in ECLS-K:2024. Also, in past studies, children had their height and weight measured to provide information about early physical development; this study component returns to the ECLS-K:2024’s spring data collection in some schools.

Child-provided data from the earlier ECLS program studies have been used extensively. A recent analysis conducted by the ECLS program team found that more than 1,000 studies and reports published between 2000 and 2021 have analyzed the ECLS academic skills and school performance data, with more than 80 percent of those utilizing the child assessment data. For example, NCES published a report on reading achievement over children’s early elementary school years using the ECLS-K reading assessment data. Use NCES’s Bibliography Search Tool to explore these reports (select “ECLS” from the Data Source drop-down menu).

If you’re instead interested in exploring trend data, research has been conducted on the differences between children who were in kindergarten during the 1998–99 and 2010–11 school years (use the Bibliography Search Tool to find reports on this topic). Additional research comparing kindergartners in the 1998–99 and 2010–11 school years with kindergartners in the 2023–24 school year is expected after this year’s ECLS-K:2024 data collection. Once the ECLS-K:2024 collection concludes, NCES will produce data files—made available to the public with deidentified data—that will allow for direct comparisons between these three groups of children. Our understanding of how the abilities of today’s kindergartners vary from those of kindergartners in the late 1990s and early 2010s relies on the participation of children in the ECLS-K:2024.  

Of course, it’s not just the children’s reading and mathematics data that will provide answers to key questions about education and child development. All the data the ECLS-K:2024 children are providing now in the study’s base year—as well as the data they will provide as they advance through their elementary years—will help inform our understanding of what today’s children know and can do.

On behalf of the thousands of researchers, policymakers, educators, and parents who rely on the important data provided by the ECLS-K:2024’s youngest contributors—thank you to our ECLS-K:2024 children!

Want to learn more?


Next up in this blog series celebrating the ECLS-K:2024, we’ll highlight the study’s parents and families. Keep an eye out this summer!

 

By Jill McCarroll and Korrie Johnson, NCES

Data on the High School Coursetaking of American Indian and Alaska Native Students

Understanding the racial/ethnic equity of educational experiences is a vital objective. The National Assessment of Educational Progress (NAEP) High School Transcript Study (HSTS) collects and analyzes transcripts from a nationally representative sample of America’s public and private high school graduates, including information about the coursetaking of students by race/ethnicity.

In 2019, NCES collected and coded high school transcript data from graduates who participated in the grade 12 NAEP assessments. The participants included American Indian and Alaska Native (AI/AN) students as well as students from other racial/ethnic groups. The main HSTS 2019 results do not include AI/AN findings because the sample sizes for AI/AN students in earlier collection periods were too small to report NAEP performance linked to coursetaking measures. Therefore, this blog post serves to highlight available AI/AN data. Find more information about NAEP's race/ethnicity categories and trends.
 

About HSTS 2019

The 2019 collection is the eighth wave of the study, which was last conducted in 2009 and first conducted in 1987. Data from 1990, 2000, 2009, and 2019—representing approximately decade-long spans—are discussed here. Data from HSTS cover prepandemic school years.
 

How many credits did AI/AN graduates earn?

For all racial/ethnic groups, the average number of Carnegie credits AI/AN graduates earned in 2019 was higher than in 2009 and earlier decades (figure 1). AI/AN graduates earned 27.4 credits on average in 2019, an increase from 23.0 credits in 1990. However, AI/AN graduates earned fewer overall credits in 2019 than did Asian/Pacific Islander, Black, and White graduates, a pattern consistent with prior decades.


Figure 1. Average total Carnegie credits earned by high school graduates, by student race/ethnicity: Selected years, 1990 through 2019 

[click to enlarge image]

Horizontal bar chart showing average total Carnegie credits earned by high school graduates by student race/ethnicity in selected years from 1990 through 2019.

* Significantly different (p < .05) from American Indian/Alaska Native group in the given year.                                                              
+ Significantly different (p < .05) from 2019 within racial/ethnic group.                                                   
NOTE: Race categories exclude Hispanic origin. Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian.                                                               
SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP) High School Transcript Study, various years, 1990 to 2019.


In 2019, the smaller number of total credits earned by AI/AN graduates—compared with graduates in other racial/ethnic groups—was driven by the smaller number of academic credits earned. On average, AI/AN graduates earned about 1 to 3 academic credits less (19.3 credits) than graduates in other racial/ethnic groups (e.g., 22.2 for Asian/Pacific Islander graduates and 20.6 for Hispanic graduates) (figure 2). In contrast, AI/AN graduates earned more or a similar number of credits in career and technical education (CTE) (3.6 credits) and other courses (4.5 credits) compared with graduates in other racial/ethnic groups.


Figure 2. Average Carnegie credits earned by high school graduates in academic, career and technical education (CTE), and other courses, by student race/ethnicity: 2019

[click to enlarge image]

Horizontal bar chart showing average Carnegie credits earned by high school graduates in academic, career and technical education (CTE), and other courses by student race/ethnicity in 2019

* Significantly different (p < .05) from American Indian/Alaska Native group.                                                                            
NOTE: Race categories exclude Hispanic origin. Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian.                                                                                                                                                            
SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP) High School Transcript Study, 2019.         
  



What was the grade point average (GPA) of AI/AN graduates?

As with credits earned, GPA has been generally trending upward since 1990. AI/AN graduates had an average GPA of 2.54 in 1990 and an average GPA of 3.02 in 2019 (figure 3). Unlike with credits earned, however, the average GPA for AI/AN graduates was between the GPA of graduates in other racial/ethnic groups in 2019: it was lower than the GPAs for Asian/Pacific Islander and White graduates and higher than the GPAs for Black and Hispanic graduates.


Figure 3. Average overall grade point average (GPA) earned by high school graduates, by student race/ethnicity: Selected years, 1990 through 2019

[click to enlarge image]

Horizontal bar chart showing average overall grade point average (GPA) earned by high school graduates by student race/ethnicity in selected years from 1990 through 2019.

* Significantly different (p < .05) from American Indian/Alaska Native group in the given year.                                            
+ Significantly different (p < .05) from 2019 within racial/ethnic group.                                                                                       
NOTE: Race categories exclude Hispanic origin. Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian.                                                                                                                                                            
SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP) High School Transcript Study, various years, 1990 to 2019.



What curriculum level did AI/AN graduates reach?

HSTS uses curriculum levels to measure the rigor of high school graduates’ coursework as a potential indicator of college preparedness. There are three curriculum levels: standard, midlevel, and rigorous. Students who did not meet the requirements for a standard curriculum are considered to have a “below standard” curriculum.

Reflecting the smaller numbers of academic credits earned by AI/AN graduates, as described above, a lower percentage of AI/AN graduates reached the rigorous level (the highest level): only 5 percent of AI/AN graduates had completed a rigorous curriculum in 2019, compared with 10 percent of Hispanic, 13 percent of White, and 28 percent of Asian/Pacific Islander graduates (table 1). Similarly, a lower percentage of AI/AN graduates completed a midlevel curriculum than did White, Black, or Hispanic graduates. At the standard and below-standard levels, therefore, AI/AN graduates were overrepresented relative to most other groups.


Table 1. Percentage distribution of high school graduates across earned curriculum levels, by student race/ethnicity: 2019

Table showing the percentage distribution of high school graduates across earned curriculum levels (below standard, standard, midlevel, and rigorous) by student race/ethnicity in 2019.

* Significantly different (p < .05) from American Indian/Alaska Native group.
NOTE: Details may not sum to total due to rounding. A graduate who achieves the standard curriculum earned at least four Carnegie credits of English and three Carnegie credits each of social studies, mathematics, and science. A graduate who achieves a midlevel curriculum earned at least four Carnegie credits in English, three Carnegie credits in mathematics (including credits in algebra and geometry), three Carnegie credits in science (including credits in two among the subjects of biology, chemistry, and physics), three Carnegie credits in social studies, and one Carnegie credit in world languages. A graduate who achieves a rigorous curriculum earned at least four Carnegie credits in English, four Carnegie credits in mathematics (including credits in precalculus or calculus), three Carnegie credits in science (including credits in all three subjects of biology, chemistry, and physics), three Carnegie credits in social studies, and three Carnegie credits in world languages. Graduates with curriculum that do not meet the requirements for the standard level are considered as “Below standard.” Race categories exclude Hispanic origin. Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian.
SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP) High School Transcript Study, 2019.


Explore the HSTS 2019 website to learn more about the study, including how courses are classified, grade point average is calculated, and race/ethnicity categories have changed over time. Be sure to follow NCES on XFacebookLinkedIn, and YouTube and subscribe to the NCES News Flash to stay informed about future HSTS data and resources.

 

By Ben Dalton, RTI International, and Robert Perkins, Westat