forked from davisk93/Davis-et-al_Aerial-Survey
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnreconciled-DO_J18_comments.R
301 lines (233 loc) · 10.1 KB
/
Unreconciled-DO_J18_comments.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# GoMMAPPS Unreconciled Double Observer Code
# Survey: July 2018
# Script matches and codes unreconciled double observer records
# need AmbiguousGrpsFunction.R and Matching-Function.R
#Libraries
library(dplyr)
library(tidyr)
library(reshape)
library(stringr)
#Load data and clean up
setwd()
#Survey data
DataJ18 <- read.csv(file = "./gommapps_aerialSurvey_July2018.csv", header = TRUE, stringsAsFactors = F)
# (Step 1 = create ordered data frame
# Order data
OrderJ18 <- DataJ18[
with(DataJ18, order(year, month, day, secs)),
]
# coding to ensure any bird observations with same time stamp as Beg or End are within Beg/End rows:
OrderJ18$alpha.order <- OrderJ18$species
OrderJ18$alpha.order[OrderJ18$alpha.order == "BEGCOUNT"] <- "aaa"
OrderJ18$alpha.order[OrderJ18$alpha.order == "ENDCOUNT"] <- "zzz"
OrderJ18 <- arrange(OrderJ18, year, month, day, hexagon, transect, str_sub(seat,1,1), secs, alpha.order, count) %>% select(-GPSerror, -alpha.order)
# Step 2 Code each transect BEG/END section uniquely:
# create transect-side code (tranID) and determine number of observers on side for each tranID:
data2obs <- OrderJ18 %>% group_by(year, month, day, hexagon, transect, side = str_sub(seat,1,1)) %>%
mutate(tranID = group_indices(), obs = n_distinct(initials)) %>%
ungroup()
# Step 3 (two observers must be counting!)
data2obs <- data2obs %>% filter(obs == 2) %>% select(-obs, -voice) # drop transect-sides with only one observer
# Step 4 (create a cumulative index of beg/end records for each transect)
data2obs <- data2obs %>% mutate(begend = ifelse(species %in% c("BEGCOUNT","ENDCOUNT"), 1, 0)) %>%
group_by(tranID) %>% mutate(begend = cumsum(begend))
# Drop observations when only one person is counting (both need to say BEG, and one cannot have said END)
rows2keep <- max(data2obs$begend)-4*c(1:(max(data2obs$begend)/4))+2 # keep all rows btwn 2nd BEG and 1st END pairs
# Step 5
options(digits = 7)
data2obs$secs <- as.numeric(data2obs$secs)
#data2obs$secs
# interim step to group observations within 10 secs .... drop BEGCOUNT and other non-bird records
#and assign first obs deltaTime = 10, so it is coded group = 1
data2obs <- data2obs %>% filter((begend %in% rows2keep) & (species != "BEGCOUNT")) %>%
mutate(deltaTime = c(10,diff(secs)), grp = ifelse(deltaTime > 10, 1, 0))
# Step 6
# cumulate index to create "within 10 sec" grouping variable for transect sections:
data2obs <- data2obs %>% group_by(tranID, begend) %>% mutate(grp = cumsum(grp))
# Step 7 Assign all observations in groups with data for only one observer as "noMatch"
data2obs <- data2obs %>% group_by(tranID, begend, grp) %>%
mutate(num.obs = length(unique(initials)), reconcile = ifelse(num.obs == 1, "noMatch", "TBD")) %>%
ungroup()
# Add binned counts
data2obs$bin <- NA
for (i in 1:length(data2obs$count)){
if (data2obs$count[i] == 0)
data2obs$bin[i] <- 1
if (data2obs$count[i] > 0 & data2obs$count[i] < 11)
data2obs$bin[i] <- 2
if (data2obs$count[i] > 10 & data2obs$count[i] < 101)
data2obs$bin[i] <- 3
if (data2obs$count[i] > 100 & data2obs$count[i] < 1001)
data2obs$bin[i] <- 4
if (data2obs$count[i] > 1000)
data2obs$bin[i] <- 5
}
# Step 8
# process species data
#species lists
speciesD <- read.csv(file = "./specieslists.csv", header = TRUE, stringsAsFactors = F)
spcode <- speciesD$MASTERLIST
sptype <- speciesD[,1:27]
#first create generic species codes for all species codes
spgroup <- matrix(data = "BIRD", nrow = 151, ncol = 1)
for(i in 1:length(spgroup)){
if(spcode[i] %in% speciesD$TERNS)
spgroup[i] <- "LARID"
if(spcode[i] %in% speciesD$GULLS)
spgroup[i] <- "LARID"
if(spcode[i] %in% speciesD$CORMORANTS)
spgroup[i] <- "CORM"
if(spcode[i] %in% speciesD$MERGANSERS)
spgroup[i] <- "MERG"
if(spcode[i] %in% speciesD$LOONS)
spgroup[i] <- "LOON"
if(spcode[i] %in% speciesD$SCAUP)
spgroup[i] <- "SCAU"
if(spcode[i] %in% speciesD$SCOTERS)
spgroup[i] <- "SCOT"
if(spcode[i] %in% speciesD$PELICANS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$HERONS.EGRETS)
spgroup[i] <- "HERO"
if(spcode[i] %in% speciesD$PHALAROPES)
spgroup[i] <- "PHAL"
if(spcode[i] %in% speciesD$TROPICBIRDS)
spgroup[i] <- "TROP"
if(spcode[i] %in% speciesD$BOOBYS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$GREBES)
spgroup[i] <- "GREB"
if(spcode[i] %in% speciesD$IBIS)
spgroup[i] <- "IBIS"
if(spcode[i] %in% speciesD$NODDYS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$PETRELS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$JAEGERS)
spgroup[i] <- "JAEG"
if(spcode[i] %in% speciesD$SHEARWATERS)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$TEALS)
spgroup[i] <- "TEAL"
if(spcode[i] %in% speciesD$GEESE)
spgroup[i] <- spcode[i]
if(spcode[i] %in% speciesD$DUCKS)
spgroup[i] <- "DUCK"
if(spcode[i] == "NOGA")
spgroup[i] <- spcode[i]
}
spcode
# now add generic species code:
genericSp <- data.frame(species = spcode,
genericSp = spgroup,
stringsAsFactors = F)
# add a row for plain BIRD records
bird <- c("BIRD", "BIRD")
genericSp <- rbind(genericSp, bird)
# add generic and calculate total birds counted, also create an index so new reconcile value can be assigned to correct record:
data2obs <- left_join(data2obs, genericSp)
data2obs <- data2obs %>% mutate(index = row.names(data2obs)) # create unique index needed for matching code
# subset data to groups with birds for both observers, create front/rear seat code
x <- data2obs %>% filter(num.obs == 2) %>% mutate(pos = str_sub(seat,2,2))
# flag groups with multiple species in same generic group and generic code
# Seems like there are no such cases
x <- x %>% group_by(tranID, begend, grp) %>% mutate(ambigGrp = tibble(species, genericSp) %>% ambiguousGrps.fn) %>% ungroup()
# mutate will not take data frame with group_by so create data frame within mutate and then it will be group_by values only .... apply function to that
y <- x %>% group_by(tranID, begend, grp) %>% mutate(reconcile = tibble(pos, species, genericSp, count, bin, ambigGrp, index) %>% BinMatching.fn)
y <- ungroup(y)
# Step 9 .. merge reconciled grps to full list
data2obs <- left_join(data2obs, y %>% select(index, reconcile2 = reconcile, ambigGrp)) %>%
mutate(reconcile = ifelse(reconcile == "TBD", reconcile2, reconcile), ambigGrp = replace_na(ambigGrp, "no")) %>%
select(-reconcile2)
# omit non-bird records
data2obs <- data2obs[!is.na(data2obs$genericSp),]
# tally up matching column
resultsJ18 <- data2obs %>% group_by(reconcile) %>% tally()
resultsJ18
#PerfectMatch = perfectMatch + countMatchSp
432+26
#PerfectGenericMatch = countMatchGeneric + perfectBinMatch
71+0
#noMatch = noMatch + noMatchgrp
557+57
#----------------------------------------------------------------------#
# detection checks
#crew member detection
crewJ18 <-data2obs %>% group_by(initials, hexagon, reconcile) %>% tally()
crewJ18
length(unique((crewJ18$initials)))
# split by crew initials to match up double observers
split <- split(crewJ18, crewJ18$initials)
# make each one a df
# to a data.frame
als <- as.data.frame(split[[1]]) #als
jsw <- as.data.frame(split[[2]])
rmw <- as.data.frame(split[[3]])
rrw <- as.data.frame(split[[4]])
sde <- as.data.frame(split[[5]])
wch <- as.data.frame(split[[6]])
#match up double observers to compare (from plane 708)
als.wch <- merge(als, wch, by = "hexagon")
als.sde <- merge(als, sde, by = "hexagon")
sde.wch <- merge(sde, wch, by = "hexagon")
#obs 1
als1 <-als.wch %>% group_by(reconcile.x) %>% tally()
als1
als2 <- als.sde %>% group_by(reconcile.x) %>% tally()
als2
#obs1 totals (als)
obs1J18 <- (47+45)/(261+280) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs2
sde1 <- als.sde %>% group_by(reconcile.y) %>% tally()
sde1
sde2 <- sde.wch %>% group_by(reconcile.x) %>% tally()
sde2
#obs2 total** pilot
#obs2 totals sde
obs2J18 <- (42+13)/(261+72) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs3
wch1 <- als.wch %>% group_by(reconcile.y) %>% tally()
wch1
wch2 <- sde.wch %>% group_by(reconcile.y) %>% tally()
wch2
#totals wch
obs3J18 <- (54+17)/(280+72) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#match up double observers to compare (from plane 736)
rrw.rmw <- merge(rrw, rmw, by = "hexagon")
rrw.jsw <- merge(rrw, jsw, by = "hexagon")
rmw.jsw <- merge(rmw, jsw, by = "hexagon")
#obs 4
rrw1 <- rrw.rmw %>% group_by(reconcile.x) %>% tally()
rrw1
rrw2 <- rrw.jsw %>% group_by(reconcile.x) %>% tally()
rrw2
#obs4 totals
obs4J18 <- (31+18)/(68+58) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs5
rmw1 <- rrw.rmw %>% group_by(reconcile.y) %>% tally()
rmw1
rmw2 <- rmw.jsw %>% group_by(reconcile.x) %>% tally()
rmw2
#obs5 total
obs5J18 <- (27+6)/(58+6) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#obs6** pilot
jsw1 <- rmw.jsw %>% group_by(reconcile.y) %>% tally()
jsw1
jsw2 <- rrw.jsw %>% group_by(reconcile.y) %>% tally()
jsw2
#totals obs6
obs6J18 <- (6+23)/(6+68) #no match for both paired situations/total observations for paired observers (this is the length of both merged dfs above)
#by plane detection
planeJ18 <- data2obs %>% group_by(tailNo, reconcile) %>% tally()
planeJ18
#----------------------------------------------------------------------#
#counting
#counting checks
countJ18 <- filter(data2obs, count ==1)
countJ18 %>% group_by(reconcile) %>% tally()
countJ18 <- filter(data2obs, count < 6)
countJ18 %>% group_by(reconcile) %>% tally()
countJ18 <- filter(data2obs, count > 5 & count < 31)
countJ18 %>% group_by(reconcile) %>% tally()
countJ18 <- filter(data2obs, count > 30)
countJ18 %>% group_by(reconcile) %>% tally()