Skip to content

Commit

Permalink
Add COCO-CN script
Browse files Browse the repository at this point in the history
  • Loading branch information
DtYXs committed Feb 20, 2023
1 parent c329fe5 commit 8b701a6
Showing 1 changed file with 84 additions and 0 deletions.
84 changes: 84 additions & 0 deletions run_scripts/coco-cn_finetune_vit-b-16_rbt-base.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
#!/usr/bin/env

# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training).
# Please set the options below according to the comments.
# For multi-gpu workers training, these options should be manually set for each worker.
# After setting the options, please run the script on each worker.
# Command: bash run_scripts/muge_finetune_vit-b-16_rbt-base.sh ${DATAPATH}

# Number of GPUs per GPU worker
GPUS_PER_NODE=8
# Number of GPU workers, for single-worker training, please set to 1
WORKER_CNT=1
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
export MASTER_ADDR=XX.XX.XX.XX
# The port for communication
export MASTER_PORT=8514
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=0

export PYTHONPATH=${PYTHONPATH}:`pwd`/cn_clip/

DATAPATH=${1}

# data options
train_data=${DATAPATH}/datasets/COCO-CN/lmdb/train
val_data=${DATAPATH}/datasets/COCO-CN/lmdb/valid # if val_data is not specif ied, the validation will be automatically disabled

# restore options
resume=${DATAPATH}/pretrained_weights/clip_cn_vit-b-16.pt # or specify your customed ckpt path to resume
reset_data_offset="--reset-data-offset"
reset_optimizer="--reset-optimizer"
# reset_optimizer=""

# output options
output_base_dir=${DATAPATH}/experiments/
name=coco-cn_finetune_vit-b-16_roberta-base_bs1024_8gpu
save_step_frequency=999999 # disable it
save_epoch_frequency=1
log_interval=1
report_training_batch_acc="--report-training-batch-acc"
# report_training_batch_acc=""

# training hyper-params
context_length=52
warmup=6
batch_size=1024
valid_batch_size=128
lr=3e-5
wd=0.001
max_epochs=20
valid_step_interval=999999
valid_epoch_interval=1
vision_model=ViT-B-16
text_model=RoBERTa-wwm-ext-base-chinese
use_augment="--use-augment"
# use_augment=""

python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --nnodes=${WORKER_CNT} --node_rank=${RANK} \
--master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} cn_clip/training/main.py \
--train-data=${train_data} \
--val-data=${val_data} \
--resume=${resume} \
${reset_data_offset} \
${reset_optimizer} \
--logs=${output_base_dir} \
--name=${name} \
--save-step-frequency=${save_step_frequency} \
--save-epoch-frequency=${save_epoch_frequency} \
--log-interval=${log_interval} \
${report_training_batch_acc} \
--context-length=${context_length} \
--warmup=${warmup} \
--batch-size=${batch_size} \
--valid-batch-size=${valid_batch_size} \
--valid-step-interval=${valid_step_interval} \
--valid-epoch-interval=${valid_epoch_interval} \
--lr=${lr} \
--wd=${wd} \
--max-epochs=${max_epochs} \
--vision-model=${vision_model} \
${use_augment} \
--text-model=${text_model} \
--grad-checkpointing

0 comments on commit 8b701a6

Please sign in to comment.