forked from OFA-Sys/Chinese-CLIP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
84 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
#!/usr/bin/env | ||
|
||
# Guide: | ||
# This script supports distributed training on multi-gpu workers (as well as single-worker training). | ||
# Please set the options below according to the comments. | ||
# For multi-gpu workers training, these options should be manually set for each worker. | ||
# After setting the options, please run the script on each worker. | ||
# Command: bash run_scripts/muge_finetune_vit-b-16_rbt-base.sh ${DATAPATH} | ||
|
||
# Number of GPUs per GPU worker | ||
GPUS_PER_NODE=8 | ||
# Number of GPU workers, for single-worker training, please set to 1 | ||
WORKER_CNT=1 | ||
# The ip address of the rank-0 worker, for single-worker training, please set to localhost | ||
export MASTER_ADDR=XX.XX.XX.XX | ||
# The port for communication | ||
export MASTER_PORT=8514 | ||
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 | ||
export RANK=0 | ||
|
||
export PYTHONPATH=${PYTHONPATH}:`pwd`/cn_clip/ | ||
|
||
DATAPATH=${1} | ||
|
||
# data options | ||
train_data=${DATAPATH}/datasets/COCO-CN/lmdb/train | ||
val_data=${DATAPATH}/datasets/COCO-CN/lmdb/valid # if val_data is not specif ied, the validation will be automatically disabled | ||
|
||
# restore options | ||
resume=${DATAPATH}/pretrained_weights/clip_cn_vit-b-16.pt # or specify your customed ckpt path to resume | ||
reset_data_offset="--reset-data-offset" | ||
reset_optimizer="--reset-optimizer" | ||
# reset_optimizer="" | ||
|
||
# output options | ||
output_base_dir=${DATAPATH}/experiments/ | ||
name=coco-cn_finetune_vit-b-16_roberta-base_bs1024_8gpu | ||
save_step_frequency=999999 # disable it | ||
save_epoch_frequency=1 | ||
log_interval=1 | ||
report_training_batch_acc="--report-training-batch-acc" | ||
# report_training_batch_acc="" | ||
|
||
# training hyper-params | ||
context_length=52 | ||
warmup=6 | ||
batch_size=1024 | ||
valid_batch_size=128 | ||
lr=3e-5 | ||
wd=0.001 | ||
max_epochs=20 | ||
valid_step_interval=999999 | ||
valid_epoch_interval=1 | ||
vision_model=ViT-B-16 | ||
text_model=RoBERTa-wwm-ext-base-chinese | ||
use_augment="--use-augment" | ||
# use_augment="" | ||
|
||
python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --nnodes=${WORKER_CNT} --node_rank=${RANK} \ | ||
--master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} cn_clip/training/main.py \ | ||
--train-data=${train_data} \ | ||
--val-data=${val_data} \ | ||
--resume=${resume} \ | ||
${reset_data_offset} \ | ||
${reset_optimizer} \ | ||
--logs=${output_base_dir} \ | ||
--name=${name} \ | ||
--save-step-frequency=${save_step_frequency} \ | ||
--save-epoch-frequency=${save_epoch_frequency} \ | ||
--log-interval=${log_interval} \ | ||
${report_training_batch_acc} \ | ||
--context-length=${context_length} \ | ||
--warmup=${warmup} \ | ||
--batch-size=${batch_size} \ | ||
--valid-batch-size=${valid_batch_size} \ | ||
--valid-step-interval=${valid_step_interval} \ | ||
--valid-epoch-interval=${valid_epoch_interval} \ | ||
--lr=${lr} \ | ||
--wd=${wd} \ | ||
--max-epochs=${max_epochs} \ | ||
--vision-model=${vision_model} \ | ||
${use_augment} \ | ||
--text-model=${text_model} \ | ||
--grad-checkpointing |