forked from neomatrix369/awesome-ai-ml-dl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Python Perf: moving all the resources into its own file
- Loading branch information
1 parent
81ef4e9
commit 41ccbc3
Showing
2 changed files
with
46 additions
and
46 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# Python Performance | ||
|
||
- [Python High Performance - Second Edition](https://github.com/PacktPublishing/Python-High-Performance-Second-Edition) | ||
- [Python and performance](https://github.com/ameroueh/performance) | ||
- [NumPy aware dynamic Python compiler using LLVM ](https://github.com/ameroueh/numba) | [Numba](http://numba.pydata.org/) | ||
- [Profiling in Python](https://github.com/mkunesch/profiling-talk) - by [Markus Kunesch](https://github.com/mkunesch) | ||
- Profiling: [Profiling with Pycharm 1](https://stackoverflow.com/questions/32926847/profiling-a-python-program-with-pycharm-or-any-other-ide#32926882) | [Profiling with Pycharm 2](https://softwaretester.info/python-profiling-with-pycharm-community-edition/) | [PyCharm and cProfile](https://intellij-support.jetbrains.com/hc/en-us/community/posts/115000057970-Is-there-a-way-to-force-PyCharm-to-use-cProfile-) | [Call tree with Python Profilers](https://stackoverflow.com/questions/4544784/how-can-you-get-the-call-tree-with-python-profilers) | ||
- Speed up Python/Pandas | ||
- [How to optimise your Pandas code](https://kanoki.org/2019/01/09/how-to-optimize-your-pandas-code/) | ||
- [Python Itertools: For a faster and memory efficient code](https://kanoki.org/2019/02/08/python-itertools/) | ||
- [Python/Pandas performance](https://www.youtube.com/results?search_query=%2Bpython+%2Bpandas+%2Bperformance) ([notebook](https://github.com/softhints/python/blob/master/notebooks/pandas/How_to_Optimize_and_Speed_Up_Pandas.ipynb)) | ||
- [High-Performance Pandas: eval() and query()](https://jakevdp.github.io/PythonDataScienceHandbook/03.12-performance-eval-and-query.html) | ||
- [Fast, Flexible, Easy and Intuitive: How to Speed Up Your Pandas Projects](https://realpython.com/fast-flexible-pandas) | ||
- [Using Cython Nuitka Numba ShedSkin Pythran Transonic](https://twitter.com/ianozsvald/status/1226436048428900353) | ||
- [using Dask / Vaex / Modin to speed up Pandas-like operations](https://twitter.com/ianozsvald/status/1225748724363780096) | ||
- Misc | ||
- [lambda functions or nested functions ('def')?](https://stackoverflow.com/questions/134626/which-is-more-preferable-to-use-lambda-functions-or-nested-functions-def) | ||
- Pandas GroupBy speedup | ||
- [Improving the performance of Pandas Group](https://stackoverflow.com/questions/47392758/improving-the-performance-of-pandas-groupby) | ||
- [Pandas groupby](https://realpython.com/pandas-groupby/) | ||
- [Faster pandas with parallel processing](https://towardsdatascience.com/faster-pandas-with-parallel-processing-cudf-vs-modin-f2318c594084) | ||
- [Optimize Custom Grouping Function](https://medium.com/dunder-data/pandas-challenge-001-optimize-custom-grouping-function-44a9f2f321f8) | ||
- [Speed up pandas 4x](https://www.kdnuggets.com/2019/11/speed-up-pandas-4x.html) | ||
- Vectorizations | ||
- [Python & Vectorization](https://towardsdatascience.com/python-vectorization-5b882eeef658?fbclid=IwAR0sS8uNZlf_iiXw3_qwvUXxh-0UlrJ_nNIFlPJ0hBSHFvGtW2y2fFETqsQ) | ||
- [SO: what-is-vectorization?](https://stackoverflow.com/questions/1422149/what-is-vectorization) | ||
- [numpy.vectorize()](https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html) | ||
- [Array Programming With NumPy: What is Vectorization?](https://realpython.com/numpy-array-programming/#what-is-vectorization) | ||
- [numba.vectorize()](https://numba.pydata.org/numba-doc/dev/user/vectorize.html) | ||
- [Fast, Flexible, Easy and Intuitive: How to Speed Up Your Pandas Projects](https://realpython.com/fast-flexible-pandas/) (**See Vectorization section**) | ||
- [numba](http://numba.pydata.org/) | ||
- [Using numba](https://tedboy.github.io/pandas/enhancingperf/enhancingperf2.html) | ||
- [Performance Tips](http://numba.pydata.org/numba-doc/latest/user/performance-tips.html) | ||
- [njit explained](https://github.com/numba/numba/issues/3523) | ||
- [Compiling Python code with @jit](https://numba.pydata.org/numba-doc/latest/user/jit.html) | ||
- [Automatic parallelization with @jit](https://numba.pydata.org/numba-doc/latest/user/parallel.html#numba-parallel) | ||
- [numba.vectorize()](https://numba.pydata.org/numba-doc/dev/user/vectorize.html) | ||
- High Performance Python talk by [Ian Oszvald](https://twitter.com/ianozsvald/): Blogs: [1](https://ianozsvald.com/2019/11/16/higher-performance-python-at-pydatacambridge-2019/) o [2](https://ianozsvald.com/2019/11/22/higher-performance-python-odsc-2019/) | [Slides](https://speakerdeck.com/ianozsvald/higher-performance-python-odsc-2019) | [Useful resources shared](https://twitter.com/DataChaz/status/1197608275606413312) | ||
- [Making Pandas Fly (EuroPython 2020)](https://speakerdeck.com/ianozsvald/making-pandas-fly-europython-2020) | [Blog](https://ianozsvald.com/2020/07/24/making-pandas-fly-at-europython-2020/) | ||
- [Making Pandas Fly (PyDataAmsterdam 2020)](https://speakerdeck.com/ianozsvald/making-pandas-fly-pydataamsterdam-2020) | [Blog](https://ianozsvald.com/2020/06/23/making-pandas-fly-for-pydataamsterdam-2020/) | ||
- [Making Pandas Fly (PyDataUK 2020)](https://speakerdeck.com/ianozsvald/pydatauk-making-pandas-fly) | [Blog](https://ianozsvald.com/2020/04/27/flying-pandas-and-making-pandas-fly-virtual-talks-this-weekend-on-faster-data-processing-with-pandas-modin-dask-and-vaex/) | ||
- [Making Pandas Fly (PyDataBudapest 2020)](https://speakerdeck.com/ianozsvald/making-pandas-fly) | [Blog](https://ianozsvald.com/2020/04/27/flying-pandas-and-making-pandas-fly-virtual-talks-this-weekend-on-faster-data-processing-with-pandas-modin-dask-and-vaex/) | ||
- [Flying Pandas - Dask, Modin and Vaex (Remote Pizza Python 2020)](https://speakerdeck.com/ianozsvald/flying-pandas-modin-dask-and-vaex) | [Blog](https://ianozsvald.com/2020/04/27/flying-pandas-and-making-pandas-fly-virtual-talks-this-weekend-on-faster-data-processing-with-pandas-modin-dask-and-vaex/) | ||
- [Tools for Higher Performance python (ODSC 2019)](https://speakerdeck.com/ianozsvald/higher-performance-python-odsc-2019) | [Blog](https://ianozsvald.com/2019/11/22/higher-performance-python-odsc-2019/) | ||
- [Tools for Higher Performance python (PyDataCambridge 2019)](https://speakerdeck.com/ianozsvald/higher-performance-python) | [Blog](https://ianozsvald.com/2019/11/16/higher-performance-python-at-pydatacambridge-2019/) |