We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大佬,我看你用了LGBMRanker,objective又是binary,是为了加group吗?
这样可以把不同数量的用户,分到不同的组?
lgb_ranker = lgb.LGBMRanker( boosting_type='gbdt', num_leaves=31, reg_alpha=0.0, reg_lambda=1, max_depth=-1, n_estimators=300, objective='binary', subsample=0.7, colsample_bytree=0.7, subsample_freq=1, learning_rate=0.01, min_child_weight=50, random_state=2018, n_jobs=-1) g_train = train_final_df.groupby(['user_id'], as_index=False).count()["label"].values
The text was updated successfully, but these errors were encountered:
大佬,我看你用了LGBMRanker,objective又是binary,是为了加group吗? 这样可以把不同数量的用户,分到不同的组? lgb_ranker = lgb.LGBMRanker( boosting_type='gbdt', num_leaves=31, reg_alpha=0.0, reg_lambda=1, max_depth=-1, n_estimators=300, objective='binary', subsample=0.7, colsample_bytree=0.7, subsample_freq=1, learning_rate=0.01, min_child_weight=50, random_state=2018, n_jobs=-1) g_train = train_final_df.groupby(['user_id'], as_index=False).count()["label"].values
不好意思,这个地方应该是个笔误。objective应该用默认值lambdarank。
Sorry, something went wrong.
2分类的lambdarank?是因为评价指标是NDCG,所以用lambdarank吗?
您好。lambdarank也仅是作为一种尝试。在这个场景下,和直接binary的objective差异确实不是很大,有略微优势。可以尝试看下另一个赛道KDD CUP 2020 multimodal recall(一种方案)。那个场景下用lambdarank可能更适合一些。
No branches or pull requests
大佬,我看你用了LGBMRanker,objective又是binary,是为了加group吗?
这样可以把不同数量的用户,分到不同的组?
The text was updated successfully, but these errors were encountered: