forked from universal-ctags/ctags
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctags.1.in
1224 lines (1061 loc) · 52.3 KB
/
ctags.1.in
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
.TH CTAGS 1 "Version @VERSION@" "Darren Hiebert" "Universal Ctags"
.SH "NAME"
@ctags_name_executable@ \- Generate tag files for source code
.SH SYNOPSIS
.TP 6
\fB@ctags_name_executable@\fP [\fBoptions\fP] [\fIfile(s)\fP]
.TP 6
\fB@etags_name_executable@\fP [\fBoptions\fP] [\fIfile(s)\fP]
.SH "DESCRIPTION"
The \fB@ctags_name_executable@\fP and \fB@etags_name_executable@\fP programs (hereinafter collectively referred to
as \fB@ctags_name_executable@\fP, except where distinguished) generate an index (or "tag") file
for a variety of language objects found in \fIfile(s)\fP.
This tag file allows these items to be quickly and easily located by a text
editor or other utility. A "tag" signifies a language object for which an
index entry is available (or, alternatively, the index entry created for that
object).
Alternatively, \fB@ctags_name_executable@\fP can generate a cross reference file which lists, in
human readable form, information about the various source objects found in a
set of language files.
Tag index files are supported by numerous editors, which allow the user to
locate the object associated with a name appearing in a source file and jump
to the file and line which defines the name. Those known about at the time of
this release are:
.RS 4
\fBVi\fP(1) and its derivatives (e.g. Elvis, Vim, Vile, Lemmy),
\fBCRiSP\fP,
\fBEmacs\fP,
\fBFTE\fP (Folding Text Editor),
\fBJED\fP,
\fBjEdit\fP,
\fBMined\fP,
\fBNEdit\fP (Nirvana Edit),
\fBTSE\fP (The SemWare Editor),
\fBUltraEdit\fP,
\fBWorkSpace\fP,
\fBX2\fP,
\fBZeus\fP
.RE
\fB@ctags_name_executable@\fP is capable of generating different kinds of tags for each of many
different languages. For a complete list of supported languages, the names
by which they are recognized, and the kinds of tags which are generated for
each, see the \fB\-\-list\-languages\fP and \fB\-\-list\-kinds\fP options.
.SH "SOURCE FILES"
Unless the \fB\-\-language\-force\fP option is specified, the language of each
source file is automatically selected based upon a mapping of file names to
languages. The mappings in effect for each language may be display using the
\fB\-\-list\-maps\fP option and may be changed using the \fB\-\-langmap\fP option.
On platforms which support it, if the name of a file is not mapped
to a language and the file is executable, the first line of the file is
checked to see if the file is a "#!" script for a recognized language.
By default, all other files names are ignored. This permits running
\fB@ctags_name_executable@\fP on all files in either a single directory (e.g. "@ctags_name_executable@ *"), or on
all files in an entire source directory tree (e.g. "@ctags_name_executable@ \-R"), since only
those files whose names are mapped to languages will be scanned.
[The reason that .h extensions are mapped to C++ files rather than C files
is because it is common to use .h extensions in C++, and no harm results in
treating them as C++ files.]
.SH "OPTIONS"
Despite the wealth of available options, defaults are set so that \fB@ctags_name_executable@\fP
is most commonly executed without any options (e.g. "@ctags_name_executable@ *", or "@ctags_name_executable@ \-R"),
which will create a tag file in the current directory for all recognized
source files. The options described below are provided merely to allow custom
tailoring to meet special needs.
Note that spaces separating the single-letter options from their parameters
are optional.
Note also that the boolean parameters to the long form options (those
beginning with "\-\-" and that take a "\fI[=yes\fP|\fIno]\fP" parameter) may
be omitted, in which case "\fB=\fP\fIyes\fP" is implied. (e.g. \fB\-\-sort\fP
is equivalent to \fB\-\-sort\fP=\fIyes\fP). Note further that "=\fI1\fP" and
"=\fIon\fP" are considered synonyms for "=\fIyes\fP", and that "=\fI0\fP"
and "=\fIoff\fP" are considered synonyms for "=\fIno\fP".
Some options are either ignored or useful only when used while running in
etags mode (see \fB\-e\fP option). Such options will be noted.
Most options may appear anywhere on the command line, affecting only those
files which follow the option. A few options, however, must appear before the
first file name and will be noted as such.
Options taking language names will accept those names in either upper or lower
case. See the \fB\-\-list\-languages\fP option for a complete list of the
built-in language names.
.TP 5
.B \-a
Equivalent to \fB\-\-append\fP.
.TP 5
.B \-B
Use backward searching patterns (e.g. ?pattern?). [Ignored in etags mode]
.TP 5
.B \-e
Enable etags mode, which will create a tag file for use with the Emacs editor.
Alternatively, if \fB@ctags_name_executable@\fP is invoked by a name containing the string
"@etags_name_executable@" (either by renaming, or creating a link to, the executable), etags
mode will be enabled. This option must appear before the first file name.
.TP 5
.BI \-f " tagfile"
Use the name specified by \fItagfile\fP for the tag file (default is "tags",
or "TAGS" when running in etags mode). If \fItagfile\fP is specified as
"\-", then the tag file is written to standard output instead. \fB@ctags_name_executable@\fP
will stubbornly refuse to take orders if \fItagfile\fP exists and its first
line contains something other than a valid tags line. This will save your neck
if you mistakenly type "@ctags_name_executable@ \-f *.c", which would otherwise overwrite your
first C file with the tags generated by the rest! It will also refuse to
accept a multi-character file name which begins with a '\-' (dash) character,
since this most likely means that you left out the tag file name and this
option tried to grab the next option as the file name. If you really want to
name your output tag file "\-ugly", specify it as "./\-ugly". This option must
appear before the first file name. If this option is specified more than once,
only the last will apply.
.TP 5
.B \-F
Use forward searching patterns (e.g. /pattern/) (default).
[Ignored in etags mode]
.TP 5
.BI \-h " list"
Specifies a list of file extensions, separated by periods, which are to be
interpreted as include (or header) files. To indicate files having no
extension, use a period not followed by a non-period character (e.g. ".",
"..x", ".x."). This option only affects how the scoping of a particular kinds
of tags is interpreted (i.e. whether or not they are considered as globally
visible or visible only within the file in which they are defined); it does
not map the extension to any particular language. Any tag which is located in
a non-include file and cannot be seen (e.g. linked to) from another file is
considered to have file-limited (e.g. static) scope. No kind of tag appearing
in an include file will be considered to have file-limited scope. If the first
character in the list is a plus sign, then the extensions in the list will be
appended to the current list; otherwise, the list will replace the current
list. See, also, the \fB\-\-file\-scope\fP option. The default list is
".h.H.hh.hpp.hxx.h++.inc.def". To restore the default list, specify \fB\-h\fP
\fIdefault\fP. Note that if an extension supplied to this option is not
already mapped to a particular language (see \fBSOURCE FILES\fP, above), you
will also need to use either the \fB\-\-langmap\fP or \fB\-\-language\-force\fP
option.
.TP 5
.BI \-I " identifier\-list"
Specifies a list of identifiers which are to be specially handled while
parsing C and C++ source files. This option is specifically provided to handle
special cases arising through the use of preprocessor macros. When the
identifiers listed are simple identifiers, these identifiers will be ignored
during parsing of the source files. If an identifier is suffixed with a '+'
character, \fB@ctags_name_executable@\fP will also ignore any parenthesis-enclosed argument list
which may immediately follow the identifier in the source files. If two
identifiers are separated with the '=' character, the first identifiers is
replaced by the second identifiers for parsing purposes. The list of
identifiers may be supplied directly on the command line or read in from a
separate file. If the first character of \fIidentifier\-list\fP is '@', '.' or
a pathname separator ('/' or '\\'), or the first two characters specify a
drive letter (e.g. "C:"), the parameter \fIidentifier\-list\fP will be
interpreted as a filename from which to read a list of identifiers, one per
input line. Otherwise, \fIidentifier\-list\fP is a list of identifiers (or
identifier pairs) to be specially handled, each delimited by a either a comma
or by white space (in which case the list should be quoted to keep the entire
list as one command line argument). Multiple \fB\-I\fP options may be supplied.
To clear the list of ignore identifiers, supply a single dash ("\-") for
\fIidentifier\-list\fP.
This feature is useful when preprocessor macros are used in such a way that
they cause syntactic confusion due to their presence. Indeed, this is the best
way of working around a number of problems caused by the presence of
syntax-busting macros in source files (see \fBCAVEATS\fP, below). Some
examples will illustrate this point.
.RS 8
int foo ARGDECL4(void *, ptr, long int, nbytes)
.RE
.IP
In the above example, the macro "ARGDECL4" would be mistakenly interpreted to
be the name of the function instead of the correct name of "foo". Specifying
\fB\-I\fP \fIARGDECL4\fP results in the correct behavior.
.RS 8
/* creates an RCS version string in module */
.br
MODULE_VERSION("$Revision$")
.RE
.IP
In the above example the macro invocation looks too much like a function
definition because it is not followed by a semicolon (indeed, it could even be
followed by a global variable definition that would look much like a K&R style
function parameter declaration). In fact, this seeming function definition
could possibly even cause the rest of the file to be skipped over while trying
to complete the definition. Specifying \fB\-I\fP \fIMODULE_VERSION+\fP would
avoid such a problem.
.RS 8
CLASS Example {
.br
// your content here
.br
};
.RE
.IP
The example above uses "CLASS" as a preprocessor macro which expands to
something different for each platform. For instance CLASS may be defined as
"class __declspec(dllexport)" on Win32 platforms and simply "class" on UNIX.
Normally, the absence of the C++ keyword "class" would cause the source file
to be incorrectly parsed. Correct behavior can be restored by specifying
\fB\-I\fP \fICLASS=class\fP.
.TP 5
.BI \-L " file"
Read from \fIfile\fP a list of file names for which tags should be generated.
If \fIfile\fP is specified as "\-", then file names are read from standard
input. File names read using this option are processed following file names
appearing on the command line. Options are also accepted in this input. If
this option is specified more than once, only the last will apply. \fBNote:\fP
\fIfile\fP is read in line-oriented mode, where a new line is the only
delimiter and non-trailing white space is considered significant, in order
that file names containing spaces may be supplied (however, trailing white
space is stripped from lines); this can affect how options are parsed if
included in the input.
.TP 5
.B \-n
Equivalent to \fB\-\-excmd\fP=\fInumber\fP.
.TP 5
.B \-N
Equivalent to \fB\-\-excmd\fP=\fIpattern\fP.
.TP 5
.BI \-o " tagfile"
Equivalent to \fB\-f\fP \fItagfile\fP.
.TP 5
.B \-R
Equivalent to \fB\-\-recurse\fP.
.TP 5
.B \-u
Equivalent to \fB\-\-sort\fP=\fIno\fP (i.e. "unsorted").
.TP 5
.B \-V
Equivalent to \fB\-\-verbose\fP.
.TP 5
.B \-w
This option is silently ignored for backward-compatibility with the ctags
of SVR4 Unix.
.TP 5
.B \-x
Print a tabular, human-readable cross reference (xref) file to standard output
instead of generating a tag file. The information contained in the output
includes: the tag name; the kind of tag; the line number, file name, and
source line (with extra white space condensed) of the file which defines the
tag. No tag file is written and all options affecting tag file output will be
ignored. Example applications for this feature are generating a listing of all
functions located in a source file (e.g. \fB@ctags_name_executable@ \-x \-\-c\-kinds\fP=\fIf\fP
\fIfile\fP), or generating a list of all externally visible global variables
located in a source file (e.g. \fB@ctags_name_executable@ \-x \-\-c\-kinds\fP=\fIv\fP
\fB\-\-file\-scope\fP=\fIno file\fP). This option must appear before the first
file name.
.TP 5
\fB\-\-append\fP[=\fIyes\fP|\fIno\fP]
Indicates whether tags generated from the specified files should be appended
to those already present in the tag file or should replace them. This option
is off by default. This option must appear before the first file name.
.TP 5
\fB\-\-etags\-include\fP=\fIfile\fP
Include a reference to \fIfile\fP in the tag file. This option may be
specified as many times as desired. This supports Emacs' capability to use a
tag file which "includes" other tag files. [Available only in etags mode]
.TP 5
\fB\-\-exclude\fP=[\fIpattern\fP]
Add \fIpattern\fP to a list of excluded files and directories. This option
may be specified as many times as desired. For each file name considered by
\fB@ctags_name_executable@\fP, each \fIpattern\fP specified using this option will be compared
against both the complete path (e.g. some/path/base.ext) and the base name
(e.g. base.ext) of the file, thus allowing patterns which match a given file
name irrespective of its path, or match only a specific path. If appropriate
support is available from the runtime library of your C compiler, then
\fIpattern\fP may contain the usual shell wildcards (not regular expressions)
common on Unix (be sure to quote the option parameter to protect the wildcards
from being expanded by the shell before being passed to \fB@ctags_name_executable@\fP; also be
aware that wildcards can match the slash character, '/'). You can determine if
shell wildcards are available on your platform by examining the output of the
\fB\-\-version\fP option, which will include "+wildcards" in the compiled
feature list; otherwise, \fIpattern\fP is matched against file names using a
simple textual comparison.
If \fIpattern\fP begins with the character '@', then the rest of the string
is interpreted as a file name from which to read exclusion patterns, one per
line. If \fIpattern\fP is empty, the list of excluded patterns is cleared.
Note that at program startup, the default exclude list contains "EIFGEN",
"SCCS", "RCS", and "CVS", which are names of directories for which it is
generally not desirable to descend while processing the \fB\-\-recurse\fP
option.
.TP 5
\fB\-\-excmd\fP=\fItype\fP
Determines the type of EX command used to locate tags in the source file.
[Ignored in etags mode]
The valid values for \fItype\fP (either the entire word or the first letter is
accepted) are:
.RS 5
.TP 9
.I number
Use only line numbers in the tag file for locating tags. This has four
advantages:
.PD 0
.RS 9
.TP 4
1.
Significantly reduces the size of the resulting tag file.
.TP 4
2.
Eliminates failures to find tags because the line defining the tag has
changed, causing the pattern match to fail (note that some editors, such as
\fBvim\fP, are able to recover in many such instances).
.TP 4
3.
Eliminates finding identical matching, but incorrect, source lines (see
\fBBUGS\fP, below).
.TP 4
4.
Retains separate entries in the tag file for lines which are identical in
content. In \fIpattern\fP mode, duplicate entries are dropped because the
search patterns they generate are identical, making the duplicate entries
useless.
.RE
.PD 1
.IP
However, this option has one significant drawback: changes to the source files
can cause the line numbers recorded in the tag file to no longer correspond
to the lines in the source file, causing jumps to some tags to miss the target
definition by one or more lines. Basically, this option is best used when the
source code to which it is applied is not subject to change. Selecting this
option type causes the following options to be ignored: \fB\-BF\fP.
.TP 9
.I pattern
Use only search patterns for all tags, rather than the line numbers usually
used for macro definitions. This has the advantage of not referencing obsolete
line numbers when lines have been added or removed since the tag file was
generated.
.TP 9
.I mixed
In this mode, patterns are generally used with a few exceptions. For C, line
numbers are used for macro definition tags. This was the default format
generated by the original \fBctags\fP and is, therefore, retained as the
default for this option. For Fortran, line numbers are used for common blocks
because their corresponding source lines are generally identical, making
pattern searches useless for finding all matches.
.RE
.TP 5
\fB\-\-extra\fP=\fI[+|\-]flags\fP|\fi*\fP
Specifies whether to include extra tag entries for certain kinds of
information. The parameter \fIflags\fP is a set of one-letter flags, each
representing one kind of extra tag entry to include in the tag file. If
\fIflags\fP is preceded by either the '+' or '\-' character, the effect of
each flag is added to, or removed from, those currently enabled; otherwise the
flags replace any current settings. All entries are included if '*'
is given. The meaning of each flag is as follows:
.PP
.RS 8
.TP 4
.I F
Equivalent to \fB\-\-file\-scope\fP.
This option is on by default.
.TP 4
.I f
Include an entry for the base file name of every source file (e.g.
"example.c"), which addresses the first line of the file.
.TP 4
.I p
Include pseudo tags. Enabled by default unless the tag file is written
to standard output.
.TP 4
.I q
Include an extra class-qualified tag entry for each tag which is a member
of a class (for languages for which this information is extracted; currently
C++, Eiffel, Java, and Perl). The actual form of the qualified tag depends
upon the language from which the tag was derived (using a form that is most
natural for how qualified calls are specified in the language). For C++ and
Perl, it is in the form "class::member"; for Eiffel and Java, it is in the
form "class.member". This may allow easier location of a specific tags when
multiple occurrences of a tag name occur in the tag file. Note, however,
that this could potentially more than double the size of the tag file.
.TP 4
.I .
Similar to the \fIf\fP extra flag but the entry addresses the end line of
the file.
.RE
.TP 5
\fB\-\-fields\fP=\fI[+|\-]flags\fP|\fi*\fP
Specifies the available extension fields which are to be included in the
entries of the tag file (see \fBTAG FILE FORMAT\fP, below, for more
information). The parameter \fIflags\fP is a set of one-letter flags, each
representing one type of extension field to include, with the following
meanings (disabled by default unless indicated):
.PP
.PD 0
.RS 8
.TP 4
.I a
Access (or export) of class members
.TP 4
.I f
File-restricted scoping [enabled]
.TP 4
.I i
Inheritance information
.TP 4
.I k
Kind of tag as a single letter [enabled]
.TP 4
.I K
Kind of tag as full name
.TP 4
.I l
Language of source file containing tag
.TP 4
.I m
Implementation information
.TP 4
.I n
Line number of tag definition
.TP 4
.I s
Scope of tag definition [enabled]
.TP 4
.I S
Signature of routine (e.g. prototype or parameter list)
.TP 4
.I t
Type and name of a variable or typedef as "typeref:" field [enabled]
.TP 4
.I z
Include the "kind:" key in kind field
.TP 4
.I Z
Include the "scope:" key in scope field
.PD 1
.RE
.RS 5
Each letter or group of letters may be preceded by either '+' to add it to the
default set, or '\-' to exclude it. In the absence of any preceding '+' or '\-'
sign, only those kinds explicitly listed in \fIflags\fP will be included in
the output (i.e. overriding the default set). All fields are included if '*'
is given. This option is ignored if the
option \fB\-\-format\fP=\fI1\fP has been specified. The default value
of this option is \fIfkst\fP.
.RE
.TP 5
\fB\-\-file\-scope\fP[=\fIyes\fP|\fIno\fP]
Indicates whether tags scoped only for a single file (i.e. tags which cannot
be seen outside of the file in which they are defined, such as "static" tags)
should be included in the output. See, also, the \fB\-h\fP option. This option
is enabled by default.
.TP 5
\fB\-\-filter\fP[=\fIyes\fP|\fIno\fP]
Causes \fB@ctags_name_executable@\fP to behave as a filter, reading source file names from
standard input and printing their tags to standard output on a file-by-file
basis. If \fB\-\-sorted\fP is enabled, tags are sorted only within the source
file in which they are defined. File names are read from standard input in
line-oriented input mode (see note for \fB\-L\fP option) and only after file
names listed on the command line or from any file supplied using the \fB\-L\fP
option. When this option is enabled, the options \fB\-f\fP, \fB\-o\fP,
and \fB\-\-totals\fP are ignored. This option is quite esoteric and is disabled
by default. This option must appear before the first file name.
.TP 5
\fB\-\-filter\-terminator\fP=\fIstring\fP
Specifies a string to print to standard output following the tags for each
file name parsed when the \fB\-\-filter\fP option is enabled. This may permit an
application reading the output of @ctags_name_executable@ to determine when the output for each
file is finished. Note that if the file name read is a directory and
\fB\-\-recurse\fP is enabled, this string will be printed only once at the
end of all tags found for by descending the directory. This string will always
be separated from the last tag line for the file by its terminating newline.
This option is quite esoteric and is empty by default. This option must appear
before the first file name.
.TP 5
\fB\-\-format\fP=\fIlevel\fP
Change the format of the output tag file. Currently the only valid values for
\fIlevel\fP are \fI1\fP or \fI2\fP. Level 1 specifies the original tag file
format and level 2 specifies a new extended format containing extension fields
(but in a manner which retains backward-compatibility with original
\fBvi\fP(1) implementations). The default level is 2. This option must appear
before the first file name. [Ignored in etags mode]
.TP 5
.B \-\-help
Prints to standard output a detailed usage description, and then exits.
.TP 5
\fB\-\-if0\fP[=\fIyes\fP|\fIno\fP]
Indicates a preference as to whether code within an "#if 0" branch of a
preprocessor conditional should be examined for non-macro tags (macro tags are
always included). Because the intent of this construct is to disable code, the
default value of this option is \fIno\fP. Note that this indicates a
preference only and does not guarantee skipping code within an "#if 0" branch,
since the fall-back algorithm used to generate tags when preprocessor
conditionals are too complex follows all branches of a conditional. This
option is disabled by default.
.TP 5
\fB\-\-<LANG>\-kinds\fP=\fI[+|\-]kinds\fP|\fi*\fP
Specifies a list of language-specific kinds of tags (or kinds) to include in
the output file for a particular language, where \fB<LANG>\fP is
case-insensitive and is one of the built-in language names (see the
\fB\-\-list\-languages\fP option for a complete list). The parameter \fIkinds\fP
is a group of one-letter flags designating kinds of tags (particular to the
language) to either include or exclude from the output. The specific sets of
flags recognized for each language, their meanings and defaults may be list
using the \fB\-\-list\-kinds\fP option. Each letter or group of letters may be
preceded by either '+' to add it to, or '\-' to remove it from, the default
set. In the absence of any preceding '+' or '\-' sign, only those kinds
explicitly listed in \fIkinds\fP will be included in the output (i.e.
overriding the default for the specified language).
Specifies '*' as the parameter \fIkinds\fP to include all kinds implemented
in <LANG> in the output. Further more if '*' is given as <LANG>, specification
of the parameter \fIkinds\fP affects all languages defined in @ctags_name_executable@.
As an example for the C language, in order to add prototypes and external
variable declarations to the default set of tag kinds, but exclude macros,
use \fB\-\-c\-kinds\fP=\fI+px\-d\fP; to include only tags for functions, use
\fB\-\-c\-kinds\fP=\fIf\fP.
.TP 5
\fB\-\-langdef\fP=\fIname\fP
Defines a new user-defined language, \fIname\fP, to be parsed with regular
expressions. Once defined, \fIname\fP may be used in other options taking
language names. The typical use of this option is to first define the
language, then map file names to it using \fI\-\-langmap\fP, then specify
regular expressions using \fI\-\-regex\-<LANG>\fP to define how its tags are
found.
.TP 5
\fB\-\-langmap\fP=\fImap[,map[...]]\fP
Controls how file names are mapped to languages (see the \fB\-\-list\-maps\fP
option). Each comma-separated \fImap\fP consists of the language name (either
a built-in or user-defined language), a colon, and a list of file extensions
and/or file name patterns. A file extension is specified by preceding the
extension with a period (e.g. ".c"). A file name pattern is specified by
enclosing the pattern in parentheses (e.g. "([Mm]akefile)"). If appropriate
support is available from the runtime library of your C compiler, then the
file name pattern may contain the usual shell wildcards common on Unix (be
sure to quote the option parameter to protect the wildcards from being
expanded by the shell before being passed to \fB@ctags_name_executable@\fP). You can determine
if shell wildcards are available on your platform by examining the output of
the \fB\-\-version\fP option, which will include "+wildcards" in the compiled
feature list; otherwise, the file name patterns are matched against file names
using a simple textual comparison. When mapping a file extension, it will
first be unmapped from any other languages.
If the first character in a map is a plus sign, then the extensions and file
name patterns in that map will be appended to the current map for that
language; otherwise, the map will replace the current map. For example, to
specify that only files with extensions of .c and .x are to be treated as C
language files, use "\fB\-\-langmap\fP=\fIc:.c.x\fP"; to also add files with
extensions of .j as Java language files, specify
"\fB\-\-langmap\fP=\fIc:.c.x,java:+.j\fP". To map makefiles (e.g. files
named either "Makefile", "makefile", or having the extension ".mak") to a
language called "make", specify "\fB\-\-langmap\fP=\fImake:([Mm]akefile).mak\fP".
To map files having no extension, specify a period not followed by a
non-period character (e.g. ".", "..x", ".x."). To clear the mapping for a
particular language (thus inhibiting automatic generation of tags for that
language), specify an empty extension list (e.g.
"\fB\-\-langmap\fP=\fIfortran:\fP"). To restore the default language mappings
for all a particular language, supply the keyword "default" for the mapping.
To specify restore the default language mappings for all languages, specify
"\fB\-\-langmap\fP=\fIdefault\fP". Note that file name patterns are tested before
file extensions when inferring the language of a file. This order of universal-ctags
is different from exuberant-ctags.
.TP 5
\fB\-\-language\-force\fP=\fIlanguage\fP
By default, \fB@ctags_name_executable@\fP automatically selects the language of a source file,
ignoring those files whose language cannot be determined (see
\fBSOURCE FILES\fP, above). This option forces the specified \fIlanguage\fP
(case-insensitive; either built-in or user-defined) to be used for every
supplied file instead of automatically selecting the language based upon its
extension. In addition, the special value \fIauto\fP indicates that the
language should be automatically selected (which effectively disables this
option).
.TP 5
\fB\-\-languages\fP=\fI[+|\-]list\fP
Specifies the languages for which tag generation is enabled, with \fIlist\fP
containing a comma-separated list of language names (case-insensitive; either
built-in or user-defined). If the first language of \fIlist\fP is not preceded
by either a '+' or '\-', the current list will be cleared before adding or
removing the languages in \fIlist\fP. Until a '\-' is encountered, each
language in the list will be added to the current list. As either the '+' or
\&'\-' is encountered in the list, the languages following it are added or
removed from the current list, respectively. Thus, it becomes simple to
replace the current list with a new one, or to add or remove languages from
the current list. The actual list of files for which tags will be generated
depends upon the language extension mapping in effect (see the \fB\-\-langmap\fP
option). Note that all languages, including user-defined languages are enabled
unless explicitly disabled using this option. Language names included in
\fIlist\fP may be any built-in language or one previously defined with
\fB\-\-langdef\fP. The default is "all", which is also accepted as a valid
argument. See the \fB\-\-list\-languages\fP option for a complete list of the
built-in language names.
.TP 5
\fB\-\-license\fP
Prints a summary of the software license to standard output, and then exits.
.TP 5
\fB\-\-line\-directives\fP[=\fIyes\fP|\fIno\fP]
Specifies whether "#line" directives should be recognized. These are present
in the output of preprocessors and contain the line number, and possibly the
file name, of the original source file(s) from which the preprocessor output
file was generated. When enabled, this option will cause \fB@ctags_name_executable@\fP to
generate tag entries marked with the file names and line numbers of their
locations original source file(s), instead of their actual locations in the
preprocessor output. The actual file names placed into the tag file will have
the same leading path components as the preprocessor output file, since it is
assumed that the original source files are located relative to the
preprocessor output file (unless, of course, the #line directive specifies an
absolute path). This option is off by default. \fBNote:\fP This option is
generally only useful when used together with the \fB\-\-excmd\fP=\fInumber\fP
(\fB\-n\fP) option. Also, you may have to use either the \fB\-\-langmap\fP or
\fB\-\-language\-force\fP option if the extension of the preprocessor output file
is not known to \fB@ctags_name_executable@\fP.
.TP 5
\fB\-\-links\fP[=\fIyes\fP|\fIno\fP]
Indicates whether symbolic links (if supported) should be followed. When
disabled, symbolic links are ignored. This option is on by default.
.TP 5
\fB\-\-list\-kinds\fP[=\fIlanguage\fP|\fIall\fP]
Lists the tag kinds recognized for either the specified language or all
languages, and then exits. Each kind of tag recorded in the tag file is
represented by a one-letter flag, which is also used to filter the tags placed
into the output through use of the \fB\-\-<LANG>\-kinds\fP option. Note that some
languages and/or tag kinds may be implemented using regular expressions and
may not be available if regex support is not compiled into \fB@ctags_name_executable@\fP (see
the \fB\-\-regex\-<LANG>\fP option). Each kind listed is enabled unless followed
by "[off]".
.TP 5
\fB\-\-list\-maps\fP[=\fIlanguage\fP|\fIall\fP]
Lists the file extensions and file name patterns which associate a file name
with a language for either the specified language or all languages, and then
exits. See the \fB\-\-langmap\fP option, and \fBSOURCE FILES\fP, above.
.TP 5
\fB\-\-list\-languages\fP
Lists the names of the languages understood by \fB@ctags_name_executable@\fP, and then exits.
These language names are case insensitive and may be used in the
\fB\-\-language\-force\fP, \fB\-\-languages\fP, \fB\-\-<LANG>\-kinds\fP, and
\fB\-\-regex\-<LANG>\fP options.
.TP 5
\fB\-\-options\fP=\fIfile\fP|\fIdirectory\fP
Read additional options from \fIfile\fP or \fIdirectory\fP. If a file is
specified, it should contain one option per line. If a directory is
specified(and scandir function is available at build configuration time),
files suffixed with .ctags or .conf under the directory are read. (On MSDOS
or MSWindows this directory traverse feature is temporary disable because the
contributor of this feature has no access to the platforms.
Volunters are welcome).
As a special case, if
\fB\-\-options\fP=\fINONE\fP is specified as the first option on the command
line, it will disable the automatic reading of any configuration options from
either a file or the environment (see \fBFILES\fP).
.TP 5
\fB\-\-quiet\fP[=\fIyes\fP|\fIno\fP]
Write fewer messages(default is \fIno\fP).
.TP 5
\fB\-\-recurse\fP[=\fIyes\fP|\fIno\fP]
Recurse into directories encountered in the list of supplied files. If the
list of supplied files is empty and no file list is specified with the
\fB\-L\fP option, then the current directory (i.e. ".") is assumed. Symbolic
links are followed. If you don't like these behaviors, either explicitly
specify the files or pipe the output of \fBfind\fP(1) into \fB@ctags_name_executable@ \-L\-\fP
instead. \fBNote:\fP This option is not supported on all platforms at present.
It is available if the output of the \fB\-\-help\fP option includes this option.
See, also, the \fB\-\-exclude\fP to limit recursion.
.TP 5
\fB\-\-regex\-<LANG>\fP=\fI/regexp/replacement/[kind\-spec/][flags]\fP
The \fI/regexp/replacement/\fP pair define a regular expression replacement
pattern, similar in style to \fBsed\fP substitution commands, with which to
generate tags from source files mapped to the named language, \fB<LANG>\fP,
(case-insensitive; either a built-in or user-defined language). The regular
expression, \fIregexp\fP, defines an extended regular expression (roughly that
used by \fBegrep\fP(1)), which is used to locate a single source line
containing a tag and may specify tab characters using \\t. When a matching
line is found, a tag will be generated for the name defined by
\fIreplacement\fP, which generally will contain the special back-references
\\1 through \\9 to refer to matching sub-expression groups within
\fIregexp\fP. The '/' separator characters shown in the parameter to the
option can actually be replaced by any character. Note that whichever
separator character is used will have to be escaped with a backslash ('\\')
character wherever it is used in the parameter as something other than a
separator. The regular expression defined by this option is added to the
current list of regular expressions for the specified language unless the
parameter is omitted, in which case the current list is cleared.
Unless modified by \fIflags\fP, \fIregexp\fP is interpreted as a Posix
extended regular expression. The \fIreplacement\fP should expand for all
matching lines to a non-empty string of characters, or a warning message will
be reported. An optional kind specifier for tags matching \fIregexp\fP may
follow \fIreplacement\fP, which will determine what kind of tag is reported in
the "kind" extension field (see \fBTAG FILE FORMAT\fP, below). The full form
of \fIkind\-spec\fP is in the form of a single letter, a comma, a name (without
spaces), a comma, a description, followed by a separator, which specify
the short and long forms of the kind value and its textual description
(displayed using \fB\-\-list\-kinds\fP). Either the kind name and/or the
description may be omitted. If \fIkind\-spec\fP is omitted, it defaults to
"\fIr,regex\fP". Finally, \fIflags\fP are one or more single-letter characters
having the following effect upon the interpretation of \fIregexp\fP:
.PP
.RS 8
.TP 4
.I b
The pattern is interpreted as a Posix basic regular expression.
.TP 4
.I e
The pattern is interpreted as a Posix extended regular expression (default).
.TP 4
.I i
The regular expression is to be applied in a case-insensitive manner.
.RE
.RS 5
Note that this option is available only if \fB@ctags_name_executable@\fP was compiled with
support for regular expressions, which depends upon your platform. You can
determine if support for regular expressions is compiled in by examining the
output of the \fB\-\-version\fP option, which will include "+regex" in the
compiled feature list.
For more information on the regular expressions used by \fB@ctags_name_executable@\fP, see
either the \fBregex(5,7)\fP man page, or the GNU info documentation for regex
(e.g. "info regex").
.RE
.TP 5
\fB\-\-sort\fP[=\fIyes\fP|\fIno\fP|\fIfoldcase\fP]
Indicates whether the tag file should be sorted on the tag name (default is
\fIyes\fP). Note that the original \fBvi\fP(1) required sorted tags.
The \fIfoldcase\fP value specifies case insensitive (or case-folded) sorting.
Fast binary searches of tag files sorted with case-folding will require
special support from tools using tag files, such as that found in the @ctags_name_executable@
readtags library, or Vim version 6.2 or higher (using "set ignorecase"). This
option must appear before the first file name. [Ignored in etags mode]
.TP 5
\fB\-\-tag\-relative\fP[=\fIyes\fP|\fIno\fP]
Indicates that the file paths recorded in the tag file should be relative to
the directory containing the tag file, rather than relative to the current
directory, unless the files supplied on the command line are specified with
absolute paths. This option must appear before the first file name. The
default is \fIyes\fP when running in etags mode (see the \fB\-e\fP
option), \fIno\fP otherwise.
.TP 5
\fB\-\-totals\fP[=\fIyes\fP|\fIno\fP]
Prints statistics about the source files read and the tag file written during
the current invocation of \fB@ctags_name_executable@\fP. This option is off by default.
This option must appear before the first file name.
.TP 5
\fB\-\-undef\fP[=\fIyes\fP|\fIno\fP]
Specifies whether a macro tag should be generated from an #undef CPP directive
(in a C/C++ file), as if it were a #define directive. This option is enabled by
default.
.TP 5
\fB\-\-verbose\fP[=\fIyes\fP|\fIno\fP]
Enable verbose mode. This prints out information on option processing and a
brief message describing what action is being taken for each file considered
by \fB@ctags_name_executable@\fP. Normally, \fB@ctags_name_executable@\fP does not read command line arguments
until after options are read from the configuration files (see \fBFILES\fP,
below) and the \fBCTAGS\fP environment variable. However, if this option is
the first argument on the command line, it will take effect before any options
are read from these sources. The default is \fIno\fP.
.TP 5
\fB\-\-version\fP
Prints a version identifier for \fB@ctags_name_executable@\fP to standard output, and then
exits. This is guaranteed to always contain the string "Universal Ctags".
.SH "OPERATIONAL DETAILS"
As \fB@ctags_name_executable@\fP considers each file name in turn, it tries to determine the
language of the file by applying the following three tests in order: if the
file extension has been mapped to a language, if the file name matches a shell
pattern mapped to a language, and finally if the file is executable and its
first line specifies an interpreter using the Unix-style "#!" specification
(if supported on the platform). If a language was identified, the file is
opened and then the appropriate language parser is called to operate on the
currently open file. The parser parses through the file and adds an entry to
the tag file for each language object it is written to handle. See
\fBTAG FILE FORMAT\fP, below, for details on these entries.
This implementation of \fB@ctags_name_executable@\fP imposes no formatting requirements on C
code as do legacy implementations. Older implementations of ctags tended to
rely upon certain formatting assumptions in order to help it resolve coding
dilemmas caused by preprocessor conditionals.
In general, \fB@ctags_name_executable@\fP tries to be smart about conditional preprocessor
directives. If a preprocessor conditional is encountered within a statement
which defines a tag, \fB@ctags_name_executable@\fP follows only the first branch of that
conditional (except in the special case of "#if 0", in which case it follows
only the last branch). The reason for this is that failing to pursue only one
branch can result in ambiguous syntax, as in the following example:
.RS
#ifdef TWO_ALTERNATIVES
.br
struct {
.br
#else
.br
union {
.br
#endif
.RS 4
short a;
.br
long b;
.RE
}
.RE
Both branches cannot be followed, or braces become unbalanced and \fB@ctags_name_executable@\fP
would be unable to make sense of the syntax.
If the application of this heuristic fails to properly parse a file,
generally due to complicated and inconsistent pairing within the conditionals,
\fB@ctags_name_executable@\fP will retry the file using a different heuristic which does not
selectively follow conditional preprocessor branches, but instead falls back
to relying upon a closing brace ("}") in column 1 as indicating the end of a
block once any brace imbalance results from following a #if conditional branch.
\fB@ctags_name_executable@\fP will also try to specially handle arguments lists enclosed in
double sets of parentheses in order to accept the following conditional
construct:
.RS
extern void foo __ARGS((int one, char two));
.RE
Any name immediately preceding the "((" will be automatically ignored and
the previous name will be used.
C++ operator definitions are specially handled. In order for consistency with
all types of operators (overloaded and conversion), the operator name in the
tag file will always be preceded by the string "operator " (i.e. even if the
actual operator definition was written as "operator<<").
After creating or appending to the tag file, it is sorted by the tag name,
removing identical tag lines.
.SH "TAG FILE FORMAT"
When not running in etags mode, each entry in the tag file consists of a
separate line, each looking like this in the most general case:
.RS 1
tag_name<TAB>file_name<TAB>ex_cmd;"<TAB>extension_fields
.RE
The fields and separators of these lines are specified as follows:
.PD 0
.RS 4
.TP 4
1.
tag name
.TP 4
2.
single tab character
.TP 4
3.
name of the file in which the object associated with the tag is located
.TP 4
4.
single tab character
.TP 4
5.
EX command used to locate the tag within the file; generally a search pattern
(either /pattern/ or ?pattern?) or line number (see \fB\-\-excmd\fP). Tag file
format 2 (see \fB\-\-format\fP) extends this EX command under certain
circumstances to include a set of extension fields (described below) embedded
in an EX comment immediately appended to the EX command, which leaves it
backward-compatible with original \fBvi\fP(1) implementations.
.RE
.PD 1
A few special tags are written into the tag file for internal purposes. These
tags are composed in such a way that they always sort to the top of the file.
Therefore, the first two characters of these tags are used a magic number to
detect a tag file for purposes of determining whether a valid tag file is
being overwritten rather than a source file.
Note that the name of each source file will be recorded in the tag file
exactly as it appears on the command line. Therefore, if the path you
specified on the command line was relative to the current directory, then it
will be recorded in that same manner in the tag file. See, however, the
\fB\-\-tag\-relative\fP option for how this behavior can be modified.
Extension fields are tab-separated key-value pairs appended to the end of the
EX command as a comment, as described above. These key value pairs appear in
the general form "\fIkey\fP:\fIvalue\fP". Their presence in the lines of the
tag file are controlled by the \fB\-\-fields\fP option. The possible keys and
the meaning of their values are as follows:
.TP 12
.I access
Indicates the visibility of this class member, where \fIvalue\fP is specific
to the language.
.TP 12
.I file
Indicates that the tag has file-limited visibility. This key has no
corresponding value.
.TP 12
.I kind
Indicates the type, or kind, of tag. Its value is either one of the
corresponding one-letter flags described under the various
\fB\-\-<LANG>\-kinds\fP options above, or a full name. It is permitted (and is,
in fact, the default) for the key portion of this field to be omitted. The
optional behaviors are controlled with the \fB\-\-fields\fP option.
.TP 12
.I implementation
When present, this indicates a limited implementation (abstract vs. concrete)
of a routine or class, where \fIvalue\fP is specific to the language
("virtual" or "pure virtual" for C++; "abstract" for Java).
.TP 12
.I inherits
When present, \fIvalue\fP. is a comma-separated list of classes from which
this class is derived (i.e. inherits from).
.TP 12
.I signature
When present, \fIvalue\fP is a language-dependent representation of the
signature of a routine. A routine signature in its complete form specifies the
return type of a routine and its formal argument list. This extension field is
presently supported only for C-based languages and does not include the return
type.
.PP
In addition, information on the scope of the tag definition may be available,
with the key portion equal to some language-dependent construct name and its
value the name declared for that construct in the program. This scope entry
indicates the scope in which the tag was found. For example, a tag generated