forked from akanazawa/hmr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_webcam.py
110 lines (78 loc) · 2.88 KB
/
demo_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import cv2
import vispy
import vispy.scene
from vispy.scene import visuals
import tensorflow as tf
import src.config
import sys
from absl import flags
from src.util import image as img_util
from src.RunModel import RunModel
import datetime
def preprocess_image(img):
if np.max(img.shape[:2]) != config.img_size:
# print('Resizing so the max image size is %d..' % img_size)
scale = (float(config.img_size) / np.max(img.shape[:2]))
else:
scale = 1.
center = np.round(np.array(img.shape[:2]) / 2).astype(int)
# image center in (x,y)
center = center[::-1]
crop, proc_param = img_util.scale_and_crop(img, scale, center, config.img_size)
# Normalize image to [-1, 1]
crop = 2 * ((crop / 255.) - 0.5)
return crop
def main():
# Video capture
cap = cv2.VideoCapture(0)
# Make a canvas and add simple view
canvas = vispy.scene.SceneCanvas(keys='interactive', show=True)
view = canvas.central_widget.add_view()
# create scatter object
scatter = visuals.Markers()
# generate data or figure out how to prevent crash without data ^^
pos = np.random.normal(size=(100000, 3), scale=0.2)
scatter.set_data(pos, edge_color=None, face_color=(1, 1, 1, .5), size=5)
view.add(scatter)
#configure view
view.camera = 'turntable' # or try 'arcball'
axis = visuals.XYZAxis(parent=view.scene)
#load model
sess = tf.Session()
model = RunModel(config, sess=sess)
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
processed = preprocess_image(frame)
# Add batch dimension: 1 x D x D x 3
input_img = np.expand_dims(processed, 0)
# Theta is the 85D vector holding [camera, pose, shape]
# where camera is 3D [s, tx, ty]
# pose is 72D vector holding the rotation of 24 joints of SMPL in axis angle format
# shape is 10D shape coefficients of SMPL
start = datetime.datetime.now()
joints, verts, cams, joints3d, theta = model.predict(
input_img, get_theta=True)
end = datetime.datetime.now()
delta = end -start
print("took:" , delta)
# Display Camera frame
cv2.imshow('frame',frame)
cv2.imshow('processed',processed)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Display Plot
# pos = np.random.normal(size=(100000, 3), scale=0.2)
scatter.set_data(verts[0], edge_color=None, face_color=(1, 1, 1, .5), size=5)
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
config = flags.FLAGS
config(sys.argv)
# Using pre-trained model, change this to use your own.
config.load_path = src.config.PRETRAINED_MODEL
config.batch_size = 1
# renderer = vis_util.SMPLRenderer(face_path=config.smpl_face_path)
main()