Skip to content

whustan/LexiconNER

Repository files navigation

LexiconNER

This is the implementation of "Named Entity Recognition using Positive-Unlabeled Learning" published at ACL2019.

Set up and run

Download glove.6B.100d.txt

Environment

pytorch 1.1.0 python 3.6.4 cuda 8.0

Instructions for running code

Phrase one <train bnPU model>

Train Print parameters run feature_pu_model.py --h

optional arguments:
  -h, --help            show this help message and exit
  --lr LR               learning rate
  --beta BETA           beta of pu learning (default 0.0)
  --gamma GAMMA         gamma of pu learning (default 1.0)
  --drop_out DROP_OUT   dropout rate
  --m M                 class balance rate
  --flag FLAG           entity type (PER/LOC/ORG/MISC)
  --dataset DATASET     name of the dataset
  --batch_size BATCH_SIZE
                    	batch size for training and testing
  --print_time PRINT_TIME
                    	epochs for printing result
  --pert PERT           percentage of data use for training
  --type TYPE           pu learning type (bnpu/bpu/upu)

e.g.) Train on PER type of conll2003 dataset: python feature_pu_model.py --dataset conll2003 --type PER ** Evaluating**

python feature_pu_model_evl.py --model saved_model/bnpu_conll2003_PER_lr_0.0001_prior_0.3_beta_0.0_gamma_1.0_percent_1.0 --flag PER --dataset conll2003 --output 1

replace the model name from the training

python final_evl.py 

Get the final result on all the entity type. Remember to revise the filenames to be the output file name of evaluating.

Phrase two <train adaPU model>

dictionary generation run python ada_dict_generation.py -h

optional arguments:
  -h, --help            show this help message and exit
  --beta BETA           learning rate
  --gamma GAMMA         gamma of pu learning (default 1.0)
  --drop_out DROP_OUT   dropout rate
  --m M                 class balance rate
  --flag FLAG           entity type (PER/LOC/ORG/MISC)
  --dataset DATASET     name of the dataset
  --lr LR               learning rate
  --batch_size BATCH_SIZE
                        batch size for training and testing
  --iter ITER           iteration time
  --unlabeled UNLABELED
                        use unlabeled data or not
  --pert PERT           percentage of data use for training
  --model MODEL         saved model name

e.g.) python ada_dict_generation.py --model saved_model/bnpu_conll2003_PER_lr_0.0001_prior_0.3_beta_0.0_gamma_1.0_percent_1.0 --flag PER --iter 1 adaptive training `run python adaptivepumodel.py -h

optional arguments:
  -h, --help            show this help message and exit
  --beta BETA           beta of pu learning (default 0.0)
  --gamma GAMMA         gamma of pu learning (default 1.0)
  --drop_out DROP_OUT   dropout rate
  --m M                 class balance rate
  --p P                 estimate value of prior
  --flag FLAG           entity type (PER/LOC/ORG/MISC)
  --dataset DATASET     name of the dataset
  --lr LR               learning rate
  --batch_size BATCH_SIZE
                        batch size for training and testing
  --output OUTPUT       write the test result, set 1 for writing result to
                        file
  --model MODEL         saved model name
  --iter ITER           iteration time
```
e.g.)
`python adaptive\_pu\_model.py --model saved\_model/bnpu\_conll2003\_PER\_lr\_0.0001\_prior\_0.3\_beta\_0.0\_gamma\_1.0\_percent\_1.0 --flag PER --iter 1`
Replace saved model names and iteration times when doing adaptive learning. And in the same iteration the iter number in dictionary generation and adaptive learning should be same.

About

Lexicon-based Named Entity Recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%