-
Notifications
You must be signed in to change notification settings - Fork 67
/
layers.py
241 lines (190 loc) · 8.95 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# -*- coding: utf-8 -*-
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math, copy, time
class CNNmodel(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layer, dropout, gpu=True):
super(CNNmodel, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_layer = num_layer
self.gpu = gpu
self.cnn_layer0 = nn.Conv1d(self.input_dim, self.hidden_dim, kernel_size=1, padding=0)
self.cnn_layers = [nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=3, padding=1) for i in range(self.num_layer-1)]
self.drop = nn.Dropout(dropout)
if self.gpu:
self.cnn_layer0 = self.cnn_layer0.cuda()
for i in range(self.num_layer-1):
self.cnn_layers[i] = self.cnn_layers[i].cuda()
def forward(self, input_feature):
batch_size = input_feature.size(0)
seq_len = input_feature.size(1)
input_feature = input_feature.transpose(2,1).contiguous()
cnn_output = self.cnn_layer0(input_feature) #(b,h,l)
cnn_output = self.drop(cnn_output)
cnn_output = torch.tanh(cnn_output)
for layer in range(self.num_layer-1):
cnn_output = self.cnn_layers[layer](cnn_output)
cnn_output = self.drop(cnn_output)
cnn_output = torch.tanh(cnn_output)
cnn_output = cnn_output.transpose(2,1).contiguous()
return cnn_output
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
return x + self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k) ## (b,h,l,d) * (b,h,d,l)
if mask is not None:
# scores = scores.masked_fill(mask == 0, -1e9)
scores = scores.masked_fill(mask, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn ##(b,h,l,l) * (b,h,l,d) = (b,h,l,d)
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class PositionalEncoding(nn.Module):
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + autograd.Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
class AttentionModel(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, d_input, d_model, d_ff, head, num_layer, dropout):
super(AttentionModel, self).__init__()
c = copy.deepcopy
# attn0 = MultiHeadedAttention(head, d_input, d_model)
attn = MultiHeadedAttention(head, d_model, dropout)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
# position = PositionalEncoding(d_model, dropout)
# layer0 = EncoderLayer(d_model, c(attn0), c(ff), dropout)
layer = EncoderLayer(d_model, c(attn), c(ff), dropout)
self.layers = clones(layer, num_layer)
# layerlist = [copy.deepcopy(layer0),]
# for _ in range(num_layer-1):
# layerlist.append(copy.deepcopy(layer))
# self.layers = nn.ModuleList(layerlist)
self.norm = LayerNorm(layer.size)
self.posi = PositionalEncoding(d_model, dropout)
self.input2model = nn.Linear(d_input, d_model)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
# x: embedding (b,l,we)
x = self.posi(self.input2model(x))
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class NERmodel(nn.Module):
def __init__(self, model_type, input_dim, hidden_dim, num_layer, dropout=0.5, gpu=True, biflag=True):
super(NERmodel, self).__init__()
self.model_type = model_type
if self.model_type == 'lstm':
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layer, batch_first=True, bidirectional=biflag)
self.drop = nn.Dropout(dropout)
if self.model_type == 'cnn':
self.cnn = CNNmodel(input_dim, hidden_dim, num_layer, dropout, gpu)
## attention model
if self.model_type == 'transformer':
self.attention_model = AttentionModel(d_input=input_dim, d_model=hidden_dim, d_ff=2*hidden_dim, head=4, num_layer=num_layer, dropout=dropout)
for p in self.attention_model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, input, mask=None):
if self.model_type == 'lstm':
hidden = None
feature_out, hidden = self.lstm(input, hidden)
feature_out_d = self.drop(feature_out)
if self.model_type == 'cnn':
feature_out_d = self.cnn(input)
if self.model_type == 'transformer':
feature_out_d = self.attention_model(input, mask)
return feature_out_d