-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c1d9823
commit c8343aa
Showing
3 changed files
with
308 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
from isegm.utils.exp_imports.default import * | ||
from isegm.model.modeling.transformer_helper.cross_entropy_loss import CrossEntropyLoss | ||
|
||
MODEL_NAME = 'sbd_plainvit_base448' | ||
|
||
|
||
def main(cfg): | ||
model, model_cfg = init_model(cfg) | ||
train(model, cfg, model_cfg) | ||
|
||
|
||
def init_model(cfg): | ||
model_cfg = edict() | ||
model_cfg.crop_size = (448, 448) | ||
model_cfg.num_max_points = 24 | ||
|
||
backbone_params = dict( | ||
img_size=model_cfg.crop_size, | ||
patch_size=(16,16), | ||
in_chans=3, | ||
embed_dim=160, | ||
depth=8, | ||
num_heads=4, | ||
mlp_ratio=4, | ||
qkv_bias=True, | ||
) | ||
|
||
neck_params = dict( | ||
in_dim = 160, | ||
out_dims = [96, 192, 288, 384], | ||
) | ||
|
||
head_params = dict( | ||
in_channels=[96, 192, 288, 384], | ||
in_index=[0, 1, 2, 3], | ||
dropout_ratio=0.1, | ||
num_classes=1, | ||
loss_decode=CrossEntropyLoss(), | ||
align_corners=False, | ||
upsample=cfg.upsample, | ||
channels=128 | ||
) | ||
|
||
model = PlainVitModel( | ||
use_disks=True, | ||
norm_radius=5, | ||
with_prev_mask=True, | ||
backbone_params=backbone_params, | ||
neck_params=neck_params, | ||
head_params=head_params, | ||
random_split=cfg.random_split, | ||
) | ||
|
||
# model.backbone.init_weights_from_pretrained(cfg.IMAGENET_PRETRAINED_MODELS.MAE_BASE) | ||
model.to(cfg.device) | ||
|
||
return model, model_cfg | ||
|
||
|
||
def train(model, cfg, model_cfg): | ||
cfg.batch_size = 32 if cfg.batch_size < 1 else cfg.batch_size | ||
cfg.val_batch_size = cfg.batch_size | ||
crop_size = model_cfg.crop_size | ||
|
||
loss_cfg = edict() | ||
loss_cfg.instance_loss = NormalizedFocalLossSigmoid(alpha=0.5, gamma=2) | ||
loss_cfg.instance_loss_weight = 1.0 | ||
|
||
train_augmentator = Compose([ | ||
UniformRandomResize(scale_range=(0.75, 1.25)), | ||
Flip(), | ||
RandomRotate90(), | ||
ShiftScaleRotate(shift_limit=0.03, scale_limit=0, | ||
rotate_limit=(-3, 3), border_mode=0, p=0.75), | ||
PadIfNeeded(min_height=crop_size[0], min_width=crop_size[1], border_mode=0), | ||
RandomCrop(*crop_size), | ||
RandomBrightnessContrast(brightness_limit=(-0.25, 0.25), contrast_limit=(-0.15, 0.4), p=0.75), | ||
RGBShift(r_shift_limit=10, g_shift_limit=10, b_shift_limit=10, p=0.75) | ||
], p=1.0) | ||
|
||
val_augmentator = Compose([ | ||
UniformRandomResize(scale_range=(0.75, 1.25)), | ||
PadIfNeeded(min_height=crop_size[0], min_width=crop_size[1], border_mode=0), | ||
RandomCrop(*crop_size) | ||
], p=1.0) | ||
|
||
points_sampler = MultiPointSampler(model_cfg.num_max_points, prob_gamma=0.80, | ||
merge_objects_prob=0.15, | ||
max_num_merged_objects=2) | ||
|
||
trainset = SBDDataset( | ||
cfg.SBD_PATH, | ||
split='train', | ||
augmentator=train_augmentator, | ||
min_object_area=80, | ||
keep_background_prob=0.01, | ||
points_sampler=points_sampler, | ||
samples_scores_path='./assets/sbd_samples_weights.pkl', | ||
samples_scores_gamma=1.25 | ||
) | ||
|
||
valset = SBDDataset( | ||
cfg.SBD_PATH, | ||
split='val', | ||
augmentator=val_augmentator, | ||
min_object_area=80, | ||
points_sampler=points_sampler, | ||
epoch_len=500 | ||
) | ||
|
||
optimizer_params = { | ||
'lr': 5e-5, 'betas': (0.9, 0.999), 'eps': 1e-8 | ||
} | ||
|
||
lr_scheduler = partial(torch.optim.lr_scheduler.MultiStepLR, | ||
milestones=[50, 55], gamma=0.1) | ||
trainer = ISTrainer(model, cfg, model_cfg, loss_cfg, | ||
trainset, valset, | ||
optimizer='adam', | ||
optimizer_params=optimizer_params, | ||
layerwise_decay=cfg.layerwise_decay, | ||
lr_scheduler=lr_scheduler, | ||
checkpoint_interval=[(0, 20), (50, 1)], | ||
image_dump_interval=300, | ||
metrics=[AdaptiveIoU()], | ||
max_interactive_points=model_cfg.num_max_points, | ||
max_num_next_clicks=3) | ||
trainer.run(num_epochs=55, validation=False) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pathlib import Path\n", | ||
"import sys\n", | ||
"\n", | ||
"sys.path.append(str(Path(sys.path[0]).parent))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 26, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"from isegm.model.is_plainvit_model import PlainVitModel\n", | ||
"from isegm.model.modeling.transformer_helper.cross_entropy_loss import CrossEntropyLoss\n", | ||
"\n", | ||
"\n", | ||
"embed_dim = 160\n", | ||
"neck_dims = [96, 192, 288, 384]\n", | ||
"\n", | ||
"def params_vit_tiny_448(**kwargs):\n", | ||
"\n", | ||
" backbone_params = dict(img_size=(448, 448), patch_size=(16,16), in_chans=3,\n", | ||
" embed_dim=embed_dim, depth=8, num_heads=4, mlp_ratio=4, qkv_bias=True,)\n", | ||
"\n", | ||
" neck_params = dict(in_dim=embed_dim, out_dims=neck_dims,)\n", | ||
"\n", | ||
" head_params = dict(in_channels=neck_dims, in_index=[0, 1, 2, 3],\n", | ||
" dropout_ratio=0.1, num_classes=1, loss_decode=CrossEntropyLoss(),\n", | ||
" align_corners=False, channels=128,)\n", | ||
"\n", | ||
" return backbone_params, neck_params, head_params\n", | ||
"\n", | ||
"\n", | ||
"vith_backbone_params, vith_neck_params, vith_head_params = params_vit_tiny_448()\n", | ||
"model_vitt = PlainVitModel(use_disks=True, norm_radius=5, with_prev_mask=True, \n", | ||
" backbone_params=vith_backbone_params, neck_params=vith_neck_params, \n", | ||
" head_params=vith_head_params)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"----\n", | ||
"13.6 M\n", | ||
"54.3 M\n", | ||
"38.7 M\n", | ||
"11.4 M\n", | ||
"3.6 M\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"def get_params_count(model):\n", | ||
" return sum(param.numel() for param in model.parameters())\n", | ||
"\n", | ||
"for model in [model_vitt]:\n", | ||
" print('----')\n", | ||
" print('{:.1f} M'.format(get_params_count(model) / 1024 / 1024))\n", | ||
" print('{:.1f} M'.format(get_params_count(model) * 4.0 / 1024 / 1024))\n", | ||
" print('{:.1f} M'.format(get_params_count(model.backbone) * 4.0 / 1024 / 1024))\n", | ||
" print('{:.1f} M'.format(get_params_count(model.neck) * 4.0 / 1024 / 1024))\n", | ||
" print('{:.1f} M'.format(get_params_count(model.head) * 4.0 / 1024 / 1024))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 27, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>.\n", | ||
"[INFO] Register zero_ops() for <class 'torch.nn.modules.dropout.Dropout'>.\n", | ||
"[INFO] Register count_normalization() for <class 'torch.nn.modules.normalization.LayerNorm'>.\n", | ||
"[INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>.\n", | ||
"[INFO] Register zero_ops() for <class 'torch.nn.modules.container.Sequential'>.\n", | ||
"[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.ConvTranspose2d'>.\n", | ||
"[INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>.\n", | ||
"10.52171G 3.71619M\n", | ||
"[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv2d'>.\n", | ||
"[INFO] Register zero_ops() for <class 'torch.nn.modules.dropout.Dropout'>.\n", | ||
"[INFO] Register count_normalization() for <class 'torch.nn.modules.normalization.LayerNorm'>.\n", | ||
"[INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>.\n", | ||
"[INFO] Register zero_ops() for <class 'torch.nn.modules.container.Sequential'>.\n", | ||
"[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.ConvTranspose2d'>.\n", | ||
"[INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>.\n", | ||
"10.52171G 3.71619M\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import torch\n", | ||
"from thop import profile\n", | ||
"from thop import clever_format\n", | ||
"\n", | ||
"\n", | ||
"# ViT-B, ViT-L, ViT-H 448\n", | ||
"input = torch.randn(1, 4, 448, 448)\n", | ||
"point = torch.randn(1, 2, 3)\n", | ||
"\n", | ||
"for model in [model_vitt]:\n", | ||
" model.eval()\n", | ||
"\n", | ||
" macs, params = profile(model, inputs=(input, point))\n", | ||
" gflops, params = clever_format([macs*2, params], \"%.5f\")\n", | ||
"\n", | ||
" print(gflops, params)\n", | ||
"\n", | ||
"\n", | ||
"vitb_backbone_params, vitb_neck_params, vitb_head_params = params_vit_tiny_448()\n", | ||
"model_vitb = PlainVitModel(use_disks=True, norm_radius=5, with_prev_mask=True, \n", | ||
" backbone_params=vitb_backbone_params, neck_params=vitb_neck_params, \n", | ||
" head_params=vitb_head_params)\n", | ||
"\n", | ||
"# ViT-B-224\n", | ||
"input = torch.randn(1, 4, 448, 448)\n", | ||
"point = torch.randn(1, 2, 3)\n", | ||
"\n", | ||
"for model in [model_vitb]:\n", | ||
" model.eval()\n", | ||
"\n", | ||
" macs, params = profile(model, inputs=(input, point))\n", | ||
" gflops, params = clever_format([macs*2, params], \"%.5f\")\n", | ||
"\n", | ||
" print(gflops, params)\n" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "base", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.8" | ||
}, | ||
"orig_nbformat": 4, | ||
"vscode": { | ||
"interpreter": { | ||
"hash": "e89c9d8a920cc6bbfac98998034c8a15ed2e75dae1678af787f4c4e38e5be518" | ||
} | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |