-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
74 lines (57 loc) · 2.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import dill as pickle
sns.set()
def plot(Q, actions):
from mpl_toolkits.mplot3d import Axes3D
pRange = list(range(1,22))
dRange = list(range(1,11))
vStar = list()
for p in pRange:
for d in dRange:
vStar.append( [p, d, np.max([Q[p, d, a] for a in actions])] )
df = pd.DataFrame(vStar, columns=['player', 'dealer', 'value'])
# And transform the old column name in something numeric
# df['player']=pd.Categorical(df['player'])
# df['player']=df['player'].cat.codes
# Make the plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(df['dealer'], df['player'], df['value'], cmap=plt.cm.viridis, linewidth=0.2)
plt.show()
# to Add a color bar which maps values to colors.
surf=ax.plot_trisurf(df['dealer'], df['player'], df['value'], cmap=plt.cm.viridis, linewidth=0.2)
fig.colorbar( surf, shrink=0.5, aspect=5)
plt.show()
# Rotate it
ax.view_init(30, 45)
plt.show()
# Other palette
ax.plot_trisurf(df['dealer'], df['player'], df['value'], cmap=plt.cm.jet, linewidth=0.01)
plt.show()
def plotMseEpisodesLambdas(arr):
# https://stackoverflow.com/questions/45857465/create-a-2d-array-from-another-array-and-its-indices-with-numpy
m,n = arr.shape
I,J = np.ogrid[:m,:n]
out = np.empty((m,n,3), dtype=arr.dtype)
out[...,0] = I
out[...,1] = J
out[...,2] = arr
out.shape = (-1,3)
df = pd.DataFrame(out, columns=['lambda', 'Episode', 'MSE'])
df['lambda'] = df['lambda'] / 10
#df = df.loc[df.index % 100 == 0]
g = sns.FacetGrid(df, hue="lambda", size=8, legend_out=True)
#g.map(plt.scatter, "episode", "mse")
g = g.map(plt.plot, "Episode", "MSE").add_legend()
plt.subplots_adjust(top=0.9)
g.fig.suptitle('Mean Squared Error per Episode')
plt.show()
def plotMseLambdas(data, lambdas):
df = pd.DataFrame(data, columns=['MSE'])
df['lambda'] = lambdas
sns.pointplot(x=df['lambda'], y=df['MSE'])
plt.title("Mean Squared Error per Lambda")
plt.show()