Skip to content

A small package to create visualizations of PyTorch execution graphs

License

Notifications You must be signed in to change notification settings

szagoruyko/pytorchviz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorchViz

A small package to create visualizations of PyTorch execution graphs and traces.

Open In Colab

Installation

Install graphviz, e.g.:

brew install graphviz

Install the package itself:

pip install torchviz

Usage

Example usage of make_dot:

model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()))

image

Set show_attrs=True and show_saved=True to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.)

model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)

image

Acknowledgements

The script was moved from functional-zoo where it was created with the help of Adam Paszke, Soumith Chintala, Anton Osokin, and uses bits from tensorboard-pytorch. Other contributors are @willprice, @soulitzer, @albanD.

About

A small package to create visualizations of PyTorch execution graphs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published