forked from Mangio621/Mangio-RVC-Fork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_f0_print.py
410 lines (385 loc) · 15.9 KB
/
extract_f0_print.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import os, traceback, sys, parselmouth
now_dir = os.getcwd()
sys.path.append(now_dir)
from my_utils import load_audio
import pyworld
import numpy as np, logging
import torchcrepe # Fork Feature. Crepe algo for training and preprocess
import torch
from torch import Tensor # Fork Feature. Used for pitch prediction for torch crepe.
import scipy.signal as signal # Fork Feature hybrid inference
import tqdm
logging.getLogger("numba").setLevel(logging.WARNING)
from multiprocessing import Process
exp_dir = sys.argv[1]
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
def printt(strr):
print(strr)
f.write("%s\n" % strr)
f.flush()
n_p = int(sys.argv[2])
f0method = sys.argv[3]
extraction_crepe_hop_length = 0
try:
extraction_crepe_hop_length = int(sys.argv[4])
except:
print("Temp Issue. echl is not being passed with argument!")
extraction_crepe_hop_length = 128
# print("EXTRACTION CREPE HOP LENGTH: " + str(extraction_crepe_hop_length))
# print("EXTRACTION CREPE HOP LENGTH TYPE: " + str(type(extraction_crepe_hop_length)))
class FeatureInput(object):
def __init__(self, samplerate=16000, hop_size=160):
self.fs = samplerate
self.hop = hop_size
self.f0_bin = 256
self.f0_max = 1100.0
self.f0_min = 50.0
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
# EXPERIMENTAL. PROBABLY BUGGY
def get_f0_hybrid_computation(
self,
methods_str,
x,
f0_min,
f0_max,
p_len,
crepe_hop_length,
time_step,
):
# Get various f0 methods from input to use in the computation stack
s = methods_str
s = s.split('hybrid')[1]
s = s.replace('[', '').replace(']', '')
methods = s.split('+')
f0_computation_stack = []
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
# Get f0 calculations for all methods specified
for method in methods:
f0 = None
if method == "pm":
f0 = (
parselmouth.Sound(x, self.fs)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
elif method == "crepe":
# Pick a batch size that doesn't cause memory errors on your gpu
torch_device_index = 0
torch_device = None
if torch.cuda.is_available():
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
elif torch.backends.mps.is_available():
torch_device = torch.device("mps")
else:
torch_device = torch.device("cpu")
model = "full"
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
f0, pd = torchcrepe.predict(
audio,
self.fs,
160,
self.f0_min,
self.f0_max,
model,
batch_size=batch_size,
device=torch_device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
f0 = f0[1:] # Get rid of extra first frame
elif method == "mangio-crepe":
# print("Performing crepe pitch extraction. (EXPERIMENTAL)")
# print("CREPE PITCH EXTRACTION HOP LENGTH: " + str(crepe_hop_length))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
torch_device_index = 0
torch_device = None
if torch.cuda.is_available():
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
elif torch.backends.mps.is_available():
torch_device = torch.device("mps")
else:
torch_device = torch.device("cpu")
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
# print(
# "Initiating f0 Crepe Feature Extraction with an extraction_crepe_hop_length of: " +
# str(crepe_hop_length)
# )
# Pitch prediction for pitch extraction
pitch: Tensor = torchcrepe.predict(
audio,
self.fs,
crepe_hop_length,
self.f0_min,
self.f0_max,
"full",
batch_size=crepe_hop_length * 2,
device=torch_device,
pad=True
)
p_len = p_len or x.shape[0] // crepe_hop_length
# Resize the pitch
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source
)
f0 = np.nan_to_num(target)
elif method == "harvest":
f0, t = pyworld.harvest(
x.astype(np.double),
fs=self.fs,
f0_ceil=self.f0_max,
f0_floor=self.f0_min,
frame_period=1000 * self.hop / self.fs,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
f0 = signal.medfilt(f0, 3)
f0 = f0[1:]
elif method == "dio":
f0, t = pyworld.dio(
x.astype(np.double),
fs=self.fs,
f0_ceil=self.f0_max,
f0_floor=self.f0_min,
frame_period=1000 * self.hop / self.fs,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
f0 = signal.medfilt(f0, 3)
f0 = f0[1:]
f0_computation_stack.append(f0)
for fc in f0_computation_stack:
print(len(fc))
# print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
f0_median_hybrid = None
if len(f0_computation_stack) == 1:
f0_median_hybrid = f0_computation_stack[0]
else:
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
return f0_median_hybrid
def compute_f0(self, path, f0_method, crepe_hop_length):
x = load_audio(path, self.fs)
p_len = x.shape[0] // self.hop
if f0_method == "pm":
time_step = 160 / 16000 * 1000
f0 = (
parselmouth.Sound(x, self.fs)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=self.f0_min,
pitch_ceiling=self.f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
elif f0_method == "harvest":
f0, t = pyworld.harvest(
x.astype(np.double),
fs=self.fs,
f0_ceil=self.f0_max,
f0_floor=self.f0_min,
frame_period=1000 * self.hop / self.fs,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
elif f0_method == "dio":
f0, t = pyworld.dio(
x.astype(np.double),
fs=self.fs,
f0_ceil=self.f0_max,
f0_floor=self.f0_min,
frame_period=1000 * self.hop / self.fs,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
elif f0_method == "crepe": # Fork Feature: Added crepe f0 for f0 feature extraction
# Pick a batch size that doesn't cause memory errors on your gpu
torch_device_index = 0
torch_device = None
if torch.cuda.is_available():
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
elif torch.backends.mps.is_available():
torch_device = torch.device("mps")
else:
torch_device = torch.device("cpu")
model = "full"
batch_size = 512
# Compute pitch using first gpu
audio = torch.tensor(np.copy(x))[None].float()
f0, pd = torchcrepe.predict(
audio,
self.fs,
160,
self.f0_min,
self.f0_max,
model,
batch_size=batch_size,
device=torch_device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
elif f0_method == "mangio-crepe":
# print("Performing crepe pitch extraction. (EXPERIMENTAL)")
# print("CREPE PITCH EXTRACTION HOP LENGTH: " + str(crepe_hop_length))
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
torch_device_index = 0
torch_device = None
if torch.cuda.is_available():
torch_device = torch.device(f"cuda:{torch_device_index % torch.cuda.device_count()}")
elif torch.backends.mps.is_available():
torch_device = torch.device("mps")
else:
torch_device = torch.device("cpu")
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
# print(
# "Initiating f0 Crepe Feature Extraction with an extraction_crepe_hop_length of: " +
# str(crepe_hop_length)
# )
# Pitch prediction for pitch extraction
pitch: Tensor = torchcrepe.predict(
audio,
self.fs,
crepe_hop_length,
self.f0_min,
self.f0_max,
"full",
batch_size=crepe_hop_length * 2,
device=torch_device,
pad=True
)
p_len = p_len or x.shape[0] // crepe_hop_length
# Resize the pitch
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source
)
f0 = np.nan_to_num(target)
elif "hybrid" in f0_method: # EXPERIMENTAL
# Perform hybrid median pitch estimation
time_step = 160 / 16000 * 1000
f0 = self.get_f0_hybrid_computation(
f0_method,
x,
self.f0_min,
self.f0_max,
p_len,
crepe_hop_length,
time_step
)
# Mangio-RVC-Fork Feature: Add hybrid f0 inference to feature extraction. EXPERIMENTAL...
return f0
def coarse_f0(self, f0):
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
self.f0_bin - 2
) / (self.f0_mel_max - self.f0_mel_min) + 1
# use 0 or 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
f0_coarse = np.rint(f0_mel).astype(int)
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
f0_coarse.max(),
f0_coarse.min(),
)
return f0_coarse
def go(self, paths, f0_method, crepe_hop_length, thread_n):
if len(paths) == 0:
printt("no-f0-todo")
else:
with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar:
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
try:
pbar.set_description("thread:%s, f0ing, Hop-Length:%s" % (thread_n, crepe_hop_length))
pbar.update(1)
if (
os.path.exists(opt_path1 + ".npy") == True
and os.path.exists(opt_path2 + ".npy") == True
):
continue
featur_pit = self.compute_f0(inp_path, f0_method, crepe_hop_length)
np.save(
opt_path2,
featur_pit,
allow_pickle=False,
) # nsf
coarse_pit = self.coarse_f0(featur_pit)
np.save(
opt_path1,
coarse_pit,
allow_pickle=False,
) # ori
except:
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))
if __name__ == "__main__":
# exp_dir=r"E:\codes\py39\dataset\mi-test"
# n_p=16
# f = open("%s/log_extract_f0.log"%exp_dir, "w")
printt(sys.argv)
featureInput = FeatureInput()
paths = []
inp_root = "%s/1_16k_wavs" % (exp_dir)
opt_root1 = "%s/2a_f0" % (exp_dir)
opt_root2 = "%s/2b-f0nsf" % (exp_dir)
os.makedirs(opt_root1, exist_ok=True)
os.makedirs(opt_root2, exist_ok=True)
for name in sorted(list(os.listdir(inp_root))):
inp_path = "%s/%s" % (inp_root, name)
if "spec" in inp_path:
continue
opt_path1 = "%s/%s" % (opt_root1, name)
opt_path2 = "%s/%s" % (opt_root2, name)
paths.append([inp_path, opt_path1, opt_path2])
ps = []
print("Using f0 method: " + f0method)
for i in range(n_p):
p = Process(
target=featureInput.go,
args=(
paths[i::n_p],
f0method,
extraction_crepe_hop_length,
i
),
)
ps.append(p)
p.start()
for i in range(n_p):
ps[i].join()