Skip to content

Commit

Permalink
fix style, typos, license (huggingface#103)
Browse files Browse the repository at this point in the history
* fix style, typos, license

* quality

* minor updates, remove Mapping error for 3.10+

* fix style

* update per feedback

---------

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
  • Loading branch information
Nathan Lambert and leandro authored Jan 27, 2023
1 parent 99c6ff2 commit ef5aaa7
Show file tree
Hide file tree
Showing 13 changed files with 304 additions and 101 deletions.
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -9,5 +9,5 @@ quality:
flake8 tests trl

style:
black --line-length 119 --target-version py38 tests trl
black --line-length 119 --target-version py38 tests trl examples setup.py
isort tests trl
5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,11 @@ cd trl/
pip install .
```

If you wish to develop TRL, you should install in editable mode:
```bash
pip install -e .
```

## How to use

### Example
Expand Down
155 changes: 155 additions & 0 deletions examples/scripts/ppo-sentiment-adam-8bit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from tqdm import tqdm

tqdm.pandas()

from transformers import pipeline, AutoTokenizer
from datasets import load_dataset

import bitsandbytes as bnb

from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
from trl.core import LengthSampler

########################################################################
# This is a fully working simple example to use trl with accelerate.
#
# This example fine-tunes a GPT2 model on the IMDB dataset using PPO
# (proximal policy optimization).
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - multi GPUS (using DeepSpeed ZeRO-Offload stages 1 & 2)
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, first initialize the accelerate
# configuration with `accelerate config`
#
########################################################################

# We first define the configuration of the experiment, defining the model, the dataset,
# the training parameters, and the PPO parameters.
# Check the default arguments in the `PPOConfig` class for more details.
config = PPOConfig(
model_name="lvwerra/gpt2-imdb",
learning_rate=1.41e-6,
)

# We then define the arguments to pass to the sentiment analysis pipeline.
# We set `return_all_scores` to True to get the sentiment score for each token.
sent_kwargs = {"return_all_scores": True, "function_to_apply": "none", "batch_size": config.forward_batch_size}

# Below is an example function to build the dataset. In our case, we use the IMDB dataset
# from the `datasets` library. One should customize this function to train the model on
# its own dataset.
def build_dataset(config, dataset_name="imdb", input_min_text_length=2, input_max_text_length=8):
"""
Build dataset for training. This builds the dataset from `load_dataset`, one should
customize this function to train the model on its own dataset.
Args:
dataset_name (`str`):
The name of the dataset to be loaded.
Returns:
dataloader (`torch.utils.data.DataLoader`):
The dataloader for the dataset.
"""
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
tokenizer.pad_token = tokenizer.eos_token
# load imdb with datasets
ds = load_dataset(dataset_name, split="train")
ds = ds.rename_columns({"text": "review"})
ds = ds.filter(lambda x: len(x["review"]) > 200, batched=False)

input_size = LengthSampler(input_min_text_length, input_max_text_length)

def tokenize(sample):
sample["input_ids"] = tokenizer.encode(sample["review"])[: input_size()]
sample["query"] = tokenizer.decode(sample["input_ids"])
return sample

ds = ds.map(tokenize, batched=False)
ds.set_format(type="torch")
return ds


# We retrieve the dataloader by calling the `build_dataset` function.
dataset = build_dataset(config)


def collator(data):
return dict((key, [d[key] for d in data]) for key in data[0])


# Now let's build the model, the reference model, and the tokenizer.
model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=config.learning_rate)

# GPT-2 tokenizer has a pad token, but it is not eos_token by default. We need to set it to eos_token.
# only for this model.
tokenizer.pad_token = tokenizer.eos_token

# We then build the PPOTrainer, passing the model, the reference model, the tokenizer
ppo_trainer = PPOTrainer(
config, model, ref_model, tokenizer, dataset=dataset, data_collator=collator, optimizer=optimizer
)

# We then build the sentiment analysis pipeline, passing the model name and the
# sentiment analysis pipeline arguments. Let's also make sure to set the device
# to the same device as the PPOTrainer.
device = ppo_trainer.accelerator.device
if ppo_trainer.accelerator.num_processes == 1:
device = 0 if torch.cuda.is_available() else "cpu" # to avoid a `pipeline` bug
sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)

# We then define the arguments to pass to the `generate` function. These arguments
# are passed to the `generate` function of the PPOTrainer, which is a wrapper around
# the `generate` function of the trained model.
generation_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
output_min_length = 4
output_max_length = 16
output_length_sampler = LengthSampler(output_min_length, output_max_length)

for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):
query_tensors = batch["input_ids"]

#### Get response from gpt2
response_tensors = []
for query in query_tensors:
gen_len = output_length_sampler()
generation_kwargs["max_new_tokens"] = gen_len
response = ppo_trainer.generate(query, **generation_kwargs)
response_tensors.append(response.squeeze()[-gen_len:])
batch["response"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]

#### Compute sentiment score
texts = [q + r for q, r in zip(batch["query"], batch["response"])]
pipe_outputs = sentiment_pipe(texts, **sent_kwargs)
rewards = [torch.tensor(output[1]["score"]).to(device) for output in pipe_outputs]

#### Run PPO step
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
ppo_trainer.log_stats(stats, batch, rewards)
48 changes: 24 additions & 24 deletions examples/sentiment/scripts/gpt2-sentiment.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
# limitations under the License.
import torch
from tqdm import tqdm

tqdm.pandas()

from transformers import pipeline, AutoTokenizer
Expand All @@ -25,7 +26,7 @@
########################################################################
# This is a fully working simple example to use trl with accelerate.
#
# This example fine-tunes a GPT2 model on the IMDB dataset using PPO
# This example fine-tunes a GPT2 model on the IMDB dataset using PPO
# (proximal policy optimization).
# in any of the following settings (with the same script):
# - single CPU or single GPU
Expand All @@ -50,52 +51,51 @@

# We then define the arguments to pass to the sentiment analysis pipeline.
# We set `return_all_scores` to True to get the sentiment score for each token.
sent_kwargs = {
"return_all_scores": True,
"function_to_apply": "none",
"batch_size": config.forward_batch_size
}
sent_kwargs = {"return_all_scores": True, "function_to_apply": "none", "batch_size": config.forward_batch_size}

# Below is an example function to build the dataset. In our case, we use the IMDB dataset
# from the `datasets` library. One should customize this function to train the model on
# its own dataset.
def build_dataset(config, dataset_name="imdb", input_min_text_length=2, input_max_text_length=8):
"""
Build dataset for training. This builds the dataset from `load_dataset`, one should
Build dataset for training. This builds the dataset from `load_dataset`, one should
customize this function to train the model on its own dataset.
Args:
dataset_name (`str`):
dataset_name (`str`):
The name of the dataset to be loaded.
Returns:
dataloader (`torch.utils.data.DataLoader`):
The dataloader for the dataset.
"""
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
tokenizer.pad_token = tokenizer.eos_token
# load imdb with datasets
ds = load_dataset(dataset_name, split='train')
ds = ds.rename_columns({'text': 'review'})
ds = ds.filter(lambda x: len(x["review"])>200, batched=False)
ds = load_dataset(dataset_name, split="train")
ds = ds.rename_columns({"text": "review"})
ds = ds.filter(lambda x: len(x["review"]) > 200, batched=False)

input_size = LengthSampler(input_min_text_length, input_max_text_length)

def tokenize(sample):
sample["input_ids"] = tokenizer.encode(sample["review"])[:input_size()]
sample["input_ids"] = tokenizer.encode(sample["review"])[: input_size()]
sample["query"] = tokenizer.decode(sample["input_ids"])
return sample

ds = ds.map(tokenize, batched=False)
ds.set_format(type='torch')
ds.set_format(type="torch")
return ds


# We retrieve the dataloader by calling the `build_dataset` function.
dataset = build_dataset(config)


def collator(data):
return dict((key, [d[key] for d in data]) for key in data[0])


# Now let's build the model, the reference model, and the tokenizer.
model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)
Expand All @@ -113,25 +113,25 @@ def collator(data):
# to the same device as the PPOTrainer.
device = ppo_trainer.accelerator.device
if ppo_trainer.accelerator.num_processes == 1:
device = 0 if torch.cuda.is_available() else "cpu" # to avoid a `pipeline` bug
device = 0 if torch.cuda.is_available() else "cpu" # to avoid a `pipeline` bug
sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)

# We then define the arguments to pass to the `generate` function. These arguments
# are passed to the `generate` function of the PPOTrainer, which is a wrapper around
# are passed to the `generate` function of the PPOTrainer, which is a wrapper around
# the `generate` function of the trained model.
generation_kwargs = {
"min_length":-1,
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id
"pad_token_id": tokenizer.eos_token_id,
}
output_min_length = 4
output_max_length = 16
output_length_sampler = LengthSampler(output_min_length, output_max_length)

for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):
query_tensors = batch['input_ids']
query_tensors = batch["input_ids"]

#### Get response from gpt2
response_tensors = []
Expand All @@ -140,13 +140,13 @@ def collator(data):
generation_kwargs["max_new_tokens"] = gen_len
response = ppo_trainer.generate(query, **generation_kwargs)
response_tensors.append(response.squeeze()[-gen_len:])
batch['response'] = [tokenizer.decode(r.squeeze()) for r in response_tensors]
batch["response"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]

#### Compute sentiment score
texts = [q + r for q,r in zip(batch['query'], batch['response'])]
texts = [q + r for q, r in zip(batch["query"], batch["response"])]
pipe_outputs = sentiment_pipe(texts, **sent_kwargs)
rewards = [torch.tensor(output[1]["score"]) for output in pipe_outputs]

#### Run PPO step
#### Run PPO step
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
ppo_trainer.log_stats(stats, batch, rewards)
ppo_trainer.log_stats(stats, batch, rewards)
Loading

0 comments on commit ef5aaa7

Please sign in to comment.