This repo is for the paper "CHAmbi: A New Benchmark on Chinese Ambiguity Challenges for Large Language Models".
CHAmbi, a specialized Chinese multi-label disambiguation dataset formatted for Natural Language Inference. It comprises 4,991 pairs of premises and hypotheses, including 824 examples featuring a wide range of ambiguities.
此存储库适用于论文“CHAmbi:大型语言模型中文歧义挑战的新基准”.
CHAmbi,一个中文多标签消歧数据集,采用自然语言推理格式。它包含 4,991 对前提和假设,其中824 对具有广泛的歧义性。
Our dataset is distributed in json format. Here's an example:
{
"premise":"学生的天职是读好书。",
"hypothesis":"学生的天职是把书读好。",
"premise_ambiguous":true,
"hypothesis_ambiguous":false,
"labels":"neutral,entailment",
"disambiguations":[
{
"premise":"学生的天职是阅读好书。",
"hypothesis":"学生的天职是把书好。",
"label":"neutral"
},
{
"premise":"学生的天职是把书读好。",
"hypothesis":"学生的天职是把书读好。",
"label":"entailment"
}
],
"category":"停顿",
"id":4,
"source":"crawler"
}
- the Creative Commons Attribution 4.0 International (CC BY 4.0) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 知识共享署名4.0国际版,允许在任何媒体上不受限制地使用、分发和复制,前提是正确引用我们的作品。
Potential uses include, but are not limited to: 1) Comparative Studies: Researchers can leverage the dataset to compare results across different models, thereby fostering innovation and advancements in the field. 2) Benchmarking: The dataset serves as a robust benchmark for evaluating new algorithms. 3) Training model: Researchers can leverage the dataset to fine-tune and train ambiguity detectors, etc.
潜在用途包括但不限于:1)比较研究:研究人员可以利用数据集比较不同模型的结果,从而促进该领域的创新和进步。 2)基准测试:该数据集可作为评估新算法的可靠基准。3) 训练模型:研究人员可以利用数据集微调训练出歧义检测器等等。