forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmxne_optim.py
1678 lines (1477 loc) · 51.7 KB
/
mxne_optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import functools
from math import sqrt
import numpy as np
from ..time_frequency._stft import istft, stft, stft_norm1, stft_norm2
from ..utils import (
_check_option,
_get_blas_funcs,
_validate_type,
logger,
sum_squared,
verbose,
warn,
)
from .mxne_debiasing import compute_bias
@functools.lru_cache(None)
def _get_dgemm():
return _get_blas_funcs(np.float64, "gemm")
def groups_norm2(A, n_orient):
"""Compute squared L2 norms of groups inplace."""
n_positions = A.shape[0] // n_orient
return np.sum(np.power(A, 2, A).reshape(n_positions, -1), axis=1)
def norm_l2inf(A, n_orient, copy=True):
"""L2-inf norm."""
if A.size == 0:
return 0.0
if copy:
A = A.copy()
return sqrt(np.max(groups_norm2(A, n_orient)))
def norm_l21(A, n_orient, copy=True):
"""L21 norm."""
if A.size == 0:
return 0.0
if copy:
A = A.copy()
return np.sum(np.sqrt(groups_norm2(A, n_orient)))
def _primal_l21(M, G, X, active_set, alpha, n_orient):
"""Primal objective for the mixed-norm inverse problem.
See :footcite:`GramfortEtAl2012`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_active)
The gain matrix a.k.a. lead field.
X : array, shape (n_active, n_times)
Sources.
active_set : array of bool, shape (n_sources,)
Mask of active sources.
alpha : float
The regularization parameter.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
Returns
-------
p_obj : float
Primal objective.
R : array, shape (n_sensors, n_times)
Current residual (M - G * X).
nR2 : float
Data-fitting term.
GX : array, shape (n_sensors, n_times)
Forward prediction.
"""
GX = np.dot(G[:, active_set], X)
R = M - GX
penalty = norm_l21(X, n_orient, copy=True)
nR2 = sum_squared(R)
p_obj = 0.5 * nR2 + alpha * penalty
return p_obj, R, nR2, GX
def dgap_l21(M, G, X, active_set, alpha, n_orient):
"""Duality gap for the mixed norm inverse problem.
See :footcite:`GramfortEtAl2012`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_active)
The gain matrix a.k.a. lead field.
X : array, shape (n_active, n_times)
Sources.
active_set : array of bool, shape (n_sources, )
Mask of active sources.
alpha : float
The regularization parameter.
n_orient : int
Number of dipoles per locations (typically 1 or 3).
Returns
-------
gap : float
Dual gap.
p_obj : float
Primal objective.
d_obj : float
Dual objective. gap = p_obj - d_obj.
R : array, shape (n_sensors, n_times)
Current residual (M - G * X).
References
----------
.. footbibilography::
"""
p_obj, R, nR2, GX = _primal_l21(M, G, X, active_set, alpha, n_orient)
dual_norm = norm_l2inf(np.dot(G.T, R), n_orient, copy=False)
scaling = alpha / dual_norm
scaling = min(scaling, 1.0)
d_obj = (scaling - 0.5 * (scaling**2)) * nR2 + scaling * np.sum(R * GX)
gap = p_obj - d_obj
return gap, p_obj, d_obj, R
def _mixed_norm_solver_cd(
M,
G,
alpha,
lipschitz_constant,
maxit=10000,
tol=1e-8,
init=None,
n_orient=1,
dgap_freq=10,
):
"""Solve L21 inverse problem with coordinate descent."""
from sklearn.linear_model import MultiTaskLasso
assert M.ndim == G.ndim and M.shape[0] == G.shape[0]
clf = MultiTaskLasso(
alpha=alpha / len(M),
tol=tol / sum_squared(M),
fit_intercept=False,
max_iter=maxit,
warm_start=True,
)
if init is not None:
clf.coef_ = init.T
else:
clf.coef_ = np.zeros((G.shape[1], M.shape[1])).T
clf.fit(G, M)
X = clf.coef_.T
active_set = np.any(X, axis=1)
X = X[active_set]
gap, p_obj, d_obj, _ = dgap_l21(M, G, X, active_set, alpha, n_orient)
return X, active_set, p_obj
def _mixed_norm_solver_bcd(
M,
G,
alpha,
lipschitz_constant,
maxit=200,
tol=1e-8,
init=None,
n_orient=1,
dgap_freq=10,
use_accel=True,
K=5,
):
"""Solve L21 inverse problem with block coordinate descent."""
_, n_times = M.shape
_, n_sources = G.shape
n_positions = n_sources // n_orient
if init is None:
X = np.zeros((n_sources, n_times))
R = M.copy()
else:
X = init
R = M - np.dot(G, X)
E = [] # track primal objective function
highest_d_obj = -np.inf
active_set = np.zeros(n_sources, dtype=bool) # start with full AS
alpha_lc = alpha / lipschitz_constant
if use_accel:
last_K_X = np.empty((K + 1, n_sources, n_times))
U = np.zeros((K, n_sources * n_times))
# First make G fortran for faster access to blocks of columns
G = np.asfortranarray(G)
# Ensure these are correct for dgemm
assert R.dtype == np.float64
assert G.dtype == np.float64
one_ovr_lc = 1.0 / lipschitz_constant
# assert that all the multiplied matrices are fortran contiguous
assert X.T.flags.f_contiguous
assert R.T.flags.f_contiguous
assert G.flags.f_contiguous
# storing list of contiguous arrays
list_G_j_c = []
for j in range(n_positions):
idx = slice(j * n_orient, (j + 1) * n_orient)
list_G_j_c.append(np.ascontiguousarray(G[:, idx]))
for i in range(maxit):
_bcd(G, X, R, active_set, one_ovr_lc, n_orient, alpha_lc, list_G_j_c)
if (i + 1) % dgap_freq == 0:
_, p_obj, d_obj, _ = dgap_l21(
M, G, X[active_set], active_set, alpha, n_orient
)
highest_d_obj = max(d_obj, highest_d_obj)
gap = p_obj - highest_d_obj
E.append(p_obj)
logger.debug(
"Iteration %d :: p_obj %f :: dgap %f :: n_active %d"
% (i + 1, p_obj, gap, np.sum(active_set) / n_orient)
)
if gap < tol:
logger.debug(f"Convergence reached ! (gap: {gap} < {tol})")
break
# using Anderson acceleration of the primal variable for faster
# convergence
if use_accel:
last_K_X[i % (K + 1)] = X
if i % (K + 1) == K:
for k in range(K):
U[k] = last_K_X[k + 1].ravel() - last_K_X[k].ravel()
C = U @ U.T
# at least on ARM64 we can't rely on np.linalg.solve to
# reliably raise LinAlgError here, so use SVD instead
# equivalent to:
# z = np.linalg.solve(C, np.ones(K))
u, s, _ = np.linalg.svd(C, hermitian=True)
if s[-1] <= 1e-6 * s[0] or not np.isfinite(s).all():
logger.debug("Iteration %d: LinAlg Error" % (i + 1))
continue
z = ((u * 1 / s) @ u.T).sum(0)
c = z / z.sum()
X_acc = np.sum(last_K_X[:-1] * c[:, None, None], axis=0)
_grp_norm2_acc = groups_norm2(X_acc, n_orient)
active_set_acc = _grp_norm2_acc != 0
if n_orient > 1:
active_set_acc = np.kron(
active_set_acc, np.ones(n_orient, dtype=bool)
)
p_obj = _primal_l21(M, G, X[active_set], active_set, alpha, n_orient)[0]
p_obj_acc = _primal_l21(
M, G, X_acc[active_set_acc], active_set_acc, alpha, n_orient
)[0]
if p_obj_acc < p_obj:
X = X_acc
active_set = active_set_acc
R = M - G[:, active_set] @ X[active_set]
X = X[active_set]
return X, active_set, E
def _bcd(G, X, R, active_set, one_ovr_lc, n_orient, alpha_lc, list_G_j_c):
"""Implement one full pass of BCD.
BCD stands for Block Coordinate Descent.
This function make use of scipy.linalg.get_blas_funcs to speed reasons.
Parameters
----------
G : array, shape (n_sensors, n_active)
The gain matrix a.k.a. lead field.
X : array, shape (n_sources, n_times)
Sources, modified in place.
R : array, shape (n_sensors, n_times)
The residuals: R = M - G @ X, modified in place.
active_set : array of bool, shape (n_sources, )
Mask of active sources, modified in place.
one_ovr_lc : array, shape (n_positions, )
One over the lipschitz constants.
n_orient : int
Number of dipoles per positions (typically 1 or 3).
n_positions : int
Number of source positions.
alpha_lc: array, shape (n_positions, )
alpha * (Lipschitz constants).
"""
X_j_new = np.zeros_like(X[:n_orient, :], order="C")
dgemm = _get_dgemm()
for j, G_j_c in enumerate(list_G_j_c):
idx = slice(j * n_orient, (j + 1) * n_orient)
G_j = G[:, idx]
X_j = X[idx]
dgemm(
alpha=one_ovr_lc[j], beta=0.0, a=R.T, b=G_j, c=X_j_new.T, overwrite_c=True
)
# X_j_new = G_j.T @ R
# Mathurin's trick to avoid checking all the entries
was_non_zero = X_j[0, 0] != 0
# was_non_zero = np.any(X_j)
if was_non_zero:
dgemm(alpha=1.0, beta=1.0, a=X_j.T, b=G_j_c.T, c=R.T, overwrite_c=True)
# R += np.dot(G_j, X_j)
X_j_new += X_j
block_norm = sqrt(sum_squared(X_j_new))
if block_norm <= alpha_lc[j]:
X_j.fill(0.0)
active_set[idx] = False
else:
shrink = max(1.0 - alpha_lc[j] / block_norm, 0.0)
X_j_new *= shrink
dgemm(alpha=-1.0, beta=1.0, a=X_j_new.T, b=G_j_c.T, c=R.T, overwrite_c=True)
# R -= np.dot(G_j, X_j_new)
X_j[:] = X_j_new
active_set[idx] = True
@verbose
def mixed_norm_solver(
M,
G,
alpha,
maxit=3000,
tol=1e-8,
verbose=None,
active_set_size=50,
debias=True,
n_orient=1,
solver="auto",
return_gap=False,
dgap_freq=10,
active_set_init=None,
X_init=None,
):
"""Solve L1/L2 mixed-norm inverse problem with active set strategy.
See references :footcite:`GramfortEtAl2012,StrohmeierEtAl2016,
BertrandEtAl2020`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha : float
The regularization parameter. It should be between 0 and 100.
A value of 100 will lead to an empty active set (no active source).
maxit : int
The number of iterations.
tol : float
Tolerance on dual gap for convergence checking.
%(verbose)s
active_set_size : int
Size of active set increase at each iteration.
debias : bool
Debias source estimates.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
solver : 'cd' | 'bcd' | 'auto'
The algorithm to use for the optimization. Block Coordinate Descent
(BCD) uses Anderson acceleration for faster convergence.
return_gap : bool
Return final duality gap.
dgap_freq : int
The duality gap is computed every dgap_freq iterations of the solver on
the active set.
active_set_init : array, shape (n_dipoles,) or None
The initial active set (boolean array) used at the first iteration.
If None, the usual active set strategy is applied.
X_init : array, shape (n_dipoles, n_times) or None
The initial weight matrix used for warm starting the solver. If None,
the weights are initialized at zero.
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array, shape (new_active_set_size,)
The mask of active sources. Note that new_active_set_size is the size
of the active set after convergence of the solver.
E : list
The value of the objective function over the iterations.
gap : float
Final duality gap. Returned only if return_gap is True.
References
----------
.. footbibliography::
"""
n_dipoles = G.shape[1]
n_positions = n_dipoles // n_orient
_, n_times = M.shape
alpha_max = norm_l2inf(np.dot(G.T, M), n_orient, copy=False)
logger.info(f"-- ALPHA MAX : {alpha_max}")
alpha = float(alpha)
X = np.zeros((n_dipoles, n_times), dtype=G.dtype)
has_sklearn = True
try:
from sklearn.linear_model import MultiTaskLasso # noqa: F401
except ImportError:
has_sklearn = False
_validate_type(solver, str, "solver")
_check_option("solver", solver, ("cd", "bcd", "auto"))
if solver == "auto":
if has_sklearn and (n_orient == 1):
solver = "cd"
else:
solver = "bcd"
if solver == "cd":
if n_orient == 1 and not has_sklearn:
warn(
"Scikit-learn >= 0.12 cannot be found. Using block coordinate"
" descent instead of coordinate descent."
)
solver = "bcd"
if n_orient > 1:
warn(
"Coordinate descent is only available for fixed orientation. "
"Using block coordinate descent instead of coordinate "
"descent"
)
solver = "bcd"
if solver == "cd":
logger.info("Using coordinate descent")
l21_solver = _mixed_norm_solver_cd
lc = None
else:
assert solver == "bcd"
logger.info("Using block coordinate descent")
l21_solver = _mixed_norm_solver_bcd
G = np.asfortranarray(G)
if n_orient == 1:
lc = np.sum(G * G, axis=0)
else:
lc = np.empty(n_positions)
for j in range(n_positions):
G_tmp = G[:, (j * n_orient) : ((j + 1) * n_orient)]
lc[j] = np.linalg.norm(np.dot(G_tmp.T, G_tmp), ord=2)
if active_set_size is not None:
E = list()
highest_d_obj = -np.inf
if X_init is not None and X_init.shape != (n_dipoles, n_times):
raise ValueError("Wrong dim for initialized coefficients.")
active_set = (
active_set_init
if active_set_init is not None
else np.zeros(n_dipoles, dtype=bool)
)
idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, M), n_orient))
new_active_idx = idx_large_corr[-active_set_size:]
if n_orient > 1:
new_active_idx = (
n_orient * new_active_idx[:, None] + np.arange(n_orient)[None, :]
).ravel()
active_set[new_active_idx] = True
as_size = np.sum(active_set)
gap = np.inf
for k in range(maxit):
if solver == "bcd":
lc_tmp = lc[active_set[::n_orient]]
elif solver == "cd":
lc_tmp = None
else:
lc_tmp = 1.01 * np.linalg.norm(G[:, active_set], ord=2) ** 2
X, as_, _ = l21_solver(
M,
G[:, active_set],
alpha,
lc_tmp,
maxit=maxit,
tol=tol,
init=X_init,
n_orient=n_orient,
dgap_freq=dgap_freq,
)
active_set[active_set] = as_.copy()
idx_old_active_set = np.where(active_set)[0]
_, p_obj, d_obj, R = dgap_l21(M, G, X, active_set, alpha, n_orient)
highest_d_obj = max(d_obj, highest_d_obj)
gap = p_obj - highest_d_obj
E.append(p_obj)
logger.info(
"Iteration %d :: p_obj %f :: dgap %f :: "
"n_active_start %d :: n_active_end %d"
% (
k + 1,
p_obj,
gap,
as_size // n_orient,
np.sum(active_set) // n_orient,
)
)
if gap < tol:
logger.info(f"Convergence reached ! (gap: {gap} < {tol})")
break
# add sources if not last iteration
if k < (maxit - 1):
idx_large_corr = np.argsort(groups_norm2(np.dot(G.T, R), n_orient))
new_active_idx = idx_large_corr[-active_set_size:]
if n_orient > 1:
new_active_idx = (
n_orient * new_active_idx[:, None]
+ np.arange(n_orient)[None, :]
)
new_active_idx = new_active_idx.ravel()
active_set[new_active_idx] = True
idx_active_set = np.where(active_set)[0]
as_size = np.sum(active_set)
X_init = np.zeros((as_size, n_times), dtype=X.dtype)
idx = np.searchsorted(idx_active_set, idx_old_active_set)
X_init[idx] = X
else:
warn(f"Did NOT converge ! (gap: {gap} > {tol})")
else:
X, active_set, E = l21_solver(
M, G, alpha, lc, maxit=maxit, tol=tol, n_orient=n_orient, init=None
)
if return_gap:
gap = dgap_l21(M, G, X, active_set, alpha, n_orient)[0]
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
logger.info("Final active set size: %s" % (np.sum(active_set) // n_orient))
if return_gap:
return X, active_set, E, gap
else:
return X, active_set, E
@verbose
def iterative_mixed_norm_solver(
M,
G,
alpha,
n_mxne_iter,
maxit=3000,
tol=1e-8,
verbose=None,
active_set_size=50,
debias=True,
n_orient=1,
dgap_freq=10,
solver="auto",
weight_init=None,
):
"""Solve L0.5/L2 mixed-norm inverse problem with active set strategy.
See reference :footcite:`StrohmeierEtAl2016`.
Parameters
----------
M : array, shape (n_sensors, n_times)
The data.
G : array, shape (n_sensors, n_dipoles)
The gain matrix a.k.a. lead field.
alpha : float
The regularization parameter. It should be between 0 and 100.
A value of 100 will lead to an empty active set (no active source).
n_mxne_iter : int
The number of MxNE iterations. If > 1, iterative reweighting
is applied.
maxit : int
The number of iterations.
tol : float
Tolerance on dual gap for convergence checking.
%(verbose)s
active_set_size : int
Size of active set increase at each iteration.
debias : bool
Debias source estimates.
n_orient : int
The number of orientation (1 : fixed or 3 : free or loose).
dgap_freq : int or np.inf
The duality gap is evaluated every dgap_freq iterations.
solver : 'cd' | 'bcd' | 'auto'
The algorithm to use for the optimization.
weight_init : array, shape (n_dipoles,) or None
The initial weight used for reweighting the gain matrix. If None, the
weights are initialized with ones.
Returns
-------
X : array, shape (n_active, n_times)
The source estimates.
active_set : array
The mask of active sources.
E : list
The value of the objective function over the iterations.
References
----------
.. footbibliography::
"""
def g(w):
return np.sqrt(np.sqrt(groups_norm2(w.copy(), n_orient)))
def gprime(w):
return 2.0 * np.repeat(g(w), n_orient).ravel()
E = list()
if weight_init is not None and weight_init.shape != (G.shape[1],):
raise ValueError(
f"Wrong dimension for weight initialization. Got {weight_init.shape}. "
f"Expected {(G.shape[1],)}."
)
weights = weight_init if weight_init is not None else np.ones(G.shape[1])
active_set = weights != 0
weights = weights[active_set]
X = np.zeros((G.shape[1], M.shape[1]))
for k in range(n_mxne_iter):
X0 = X.copy()
active_set_0 = active_set.copy()
G_tmp = G[:, active_set] * weights[np.newaxis, :]
if active_set_size is not None:
if np.sum(active_set) > (active_set_size * n_orient):
X, _active_set, _ = mixed_norm_solver(
M,
G_tmp,
alpha,
debias=False,
n_orient=n_orient,
maxit=maxit,
tol=tol,
active_set_size=active_set_size,
dgap_freq=dgap_freq,
solver=solver,
)
else:
X, _active_set, _ = mixed_norm_solver(
M,
G_tmp,
alpha,
debias=False,
n_orient=n_orient,
maxit=maxit,
tol=tol,
active_set_size=None,
dgap_freq=dgap_freq,
solver=solver,
)
else:
X, _active_set, _ = mixed_norm_solver(
M,
G_tmp,
alpha,
debias=False,
n_orient=n_orient,
maxit=maxit,
tol=tol,
active_set_size=None,
dgap_freq=dgap_freq,
solver=solver,
)
logger.info("active set size %d" % (_active_set.sum() / n_orient))
if _active_set.sum() > 0:
active_set[active_set] = _active_set
# Reapply weights to have correct unit
X *= weights[_active_set][:, np.newaxis]
weights = gprime(X)
p_obj = 0.5 * np.linalg.norm(
M - np.dot(G[:, active_set], X), "fro"
) ** 2.0 + alpha * np.sum(g(X))
E.append(p_obj)
# Check convergence
if (
(k >= 1)
and np.all(active_set == active_set_0)
and np.all(np.abs(X - X0) < tol)
):
print("Convergence reached after %d reweightings!" % k)
break
else:
active_set = np.zeros_like(active_set)
p_obj = 0.5 * np.linalg.norm(M) ** 2.0
E.append(p_obj)
break
if np.any(active_set) and debias:
bias = compute_bias(M, G[:, active_set], X, n_orient=n_orient)
X *= bias[:, np.newaxis]
return X, active_set, E
###############################################################################
# TF-MxNE
class _Phi:
"""Have phi stft as callable w/o using a lambda that does not pickle."""
def __init__(self, wsize, tstep, n_coefs, n_times):
self.wsize = np.atleast_1d(wsize)
self.tstep = np.atleast_1d(tstep)
self.n_coefs = np.atleast_1d(n_coefs)
self.n_dicts = len(tstep)
self.n_freqs = wsize // 2 + 1
self.n_steps = self.n_coefs // self.n_freqs
self.n_times = n_times
# ravel freq+time here
self.ops = list()
for ws, ts in zip(self.wsize, self.tstep):
self.ops.append(
stft(np.eye(n_times), ws, ts, verbose=False).reshape(n_times, -1)
)
def __call__(self, x): # noqa: D105
if self.n_dicts == 1:
return x @ self.ops[0]
else:
return np.hstack([x @ op for op in self.ops]) / np.sqrt(self.n_dicts)
def norm(self, z, ord=2): # noqa: A002
"""Squared L2 norm if ord == 2 and L1 norm if order == 1."""
if ord not in (1, 2):
raise ValueError(f"Only supported norm order are 1 and 2. Got ord = {ord}")
stft_norm = stft_norm1 if ord == 1 else stft_norm2
norm = 0.0
if len(self.n_coefs) > 1:
z_ = np.array_split(np.atleast_2d(z), np.cumsum(self.n_coefs)[:-1], axis=1)
else:
z_ = [np.atleast_2d(z)]
for i in range(len(z_)):
norm += stft_norm(z_[i].reshape(-1, self.n_freqs[i], self.n_steps[i]))
return norm
class _PhiT:
"""Have phi.T istft as callable w/o using a lambda that does not pickle."""
def __init__(self, tstep, n_freqs, n_steps, n_times):
self.tstep = tstep
self.n_freqs = n_freqs
self.n_steps = n_steps
self.n_times = n_times
self.n_dicts = len(tstep) if isinstance(tstep, np.ndarray) else 1
self.n_coefs = list()
self.op_re = list()
self.op_im = list()
for nf, ns, ts in zip(self.n_freqs, self.n_steps, self.tstep):
nc = nf * ns
self.n_coefs.append(nc)
eye = np.eye(nc).reshape(nf, ns, nf, ns)
self.op_re.append(istft(eye, ts, n_times).reshape(nc, n_times))
self.op_im.append(istft(eye * 1j, ts, n_times).reshape(nc, n_times))
def __call__(self, z): # noqa: D105
if self.n_dicts == 1:
return z.real @ self.op_re[0] + z.imag @ self.op_im[0]
else:
x_out = np.zeros((z.shape[0], self.n_times))
z_ = np.array_split(z, np.cumsum(self.n_coefs)[:-1], axis=1)
for this_z, op_re, op_im in zip(z_, self.op_re, self.op_im):
x_out += this_z.real @ op_re + this_z.imag @ op_im
return x_out / np.sqrt(self.n_dicts)
def norm_l21_tf(Z, phi, n_orient, w_space=None):
"""L21 norm for TF."""
if Z.shape[0]:
l21_norm = np.sqrt(phi.norm(Z, ord=2).reshape(-1, n_orient).sum(axis=1))
if w_space is not None:
l21_norm *= w_space
l21_norm = l21_norm.sum()
else:
l21_norm = 0.0
return l21_norm
def norm_l1_tf(Z, phi, n_orient, w_time):
"""L1 norm for TF."""
if Z.shape[0]:
n_positions = Z.shape[0] // n_orient
Z_ = np.sqrt(
np.sum((np.abs(Z) ** 2.0).reshape((n_orient, -1), order="F"), axis=0)
)
Z_ = Z_.reshape((n_positions, -1), order="F")
if w_time is not None:
Z_ *= w_time
l1_norm = phi.norm(Z_, ord=1).sum()
else:
l1_norm = 0.0
return l1_norm
def norm_epsilon(Y, l1_ratio, phi, w_space=1.0, w_time=None):
"""Weighted epsilon norm.
The weighted epsilon norm is the dual norm of::
w_{space} * (1. - l1_ratio) * ||Y||_2 + l1_ratio * ||Y||_{1, w_{time}}.
where `||Y||_{1, w_{time}} = (np.abs(Y) * w_time).sum()`
Warning: it takes into account the fact that Y only contains coefficients
corresponding to the positive frequencies (see `stft_norm2()`): some
entries will be counted twice. It is also assumed that all entries of both
Y and w_time are non-negative. See
:footcite:`NdiayeEtAl2016,BurdakovMerkulov2001`.
Parameters
----------
Y : array, shape (n_coefs,)
The input data.
l1_ratio : float between 0 and 1
Tradeoff between L2 and L1 regularization. When it is 0, no temporal
regularization is applied.
phi : instance of _Phi
The TF operator.
w_space : float
Scalar weight of the L2 norm. By default, it is taken equal to 1.
w_time : array, shape (n_coefs, ) | None
Weights of each TF coefficient in the L1 norm. If None, weights equal
to 1 are used.
Returns
-------
nu : float
The value of the dual norm evaluated at Y.
References
----------
.. footbibliography::
"""
# since the solution is invariant to flipped signs in Y, all entries
# of Y are assumed positive
# Add negative freqs: count all freqs twice except first and last:
freqs_count = np.full(len(Y), 2)
for i, fc in enumerate(np.array_split(freqs_count, np.cumsum(phi.n_coefs)[:-1])):
fc[: phi.n_steps[i]] = 1
fc[-phi.n_steps[i] :] = 1
# exclude 0 weights:
if w_time is not None:
nonzero_weights = w_time != 0.0
Y = Y[nonzero_weights]
freqs_count = freqs_count[nonzero_weights]
w_time = w_time[nonzero_weights]
norm_inf_Y = np.max(Y / w_time) if w_time is not None else np.max(Y)
if l1_ratio == 1.0:
# dual norm of L1 weighted is Linf with inverse weights
return norm_inf_Y
elif l1_ratio == 0.0:
# dual norm of L2 is L2
return np.sqrt(phi.norm(Y[None, :], ord=2).sum())
if norm_inf_Y == 0.0:
return 0.0
# ignore some values of Y by lower bound on dual norm:
if w_time is None:
idx = Y > l1_ratio * norm_inf_Y
else:
idx = Y > l1_ratio * np.max(
Y / (w_space * (1.0 - l1_ratio) + l1_ratio * w_time)
)
if idx.sum() == 1:
return norm_inf_Y
# sort both Y / w_time and freqs_count at the same time
if w_time is not None:
idx_sort = np.argsort(Y[idx] / w_time[idx])[::-1]
w_time = w_time[idx][idx_sort]
else:
idx_sort = np.argsort(Y[idx])[::-1]
Y = Y[idx][idx_sort]
freqs_count = freqs_count[idx][idx_sort]
Y = np.repeat(Y, freqs_count)
if w_time is not None:
w_time = np.repeat(w_time, freqs_count)
K = Y.shape[0]
if w_time is None:
p_sum_Y2 = np.cumsum(Y**2)
p_sum_w2 = np.arange(1, K + 1)
p_sum_Yw = np.cumsum(Y)
upper = p_sum_Y2 / Y**2 - 2.0 * p_sum_Yw / Y + p_sum_w2
else:
p_sum_Y2 = np.cumsum(Y**2)
p_sum_w2 = np.cumsum(w_time**2)
p_sum_Yw = np.cumsum(Y * w_time)
upper = p_sum_Y2 / (Y / w_time) ** 2 - 2.0 * p_sum_Yw / (Y / w_time) + p_sum_w2
upper_greater = np.where(upper > w_space**2 * (1.0 - l1_ratio) ** 2 / l1_ratio**2)[
0
]
i0 = upper_greater[0] - 1 if upper_greater.size else K - 1
p_sum_Y2 = p_sum_Y2[i0]
p_sum_w2 = p_sum_w2[i0]
p_sum_Yw = p_sum_Yw[i0]
denom = l1_ratio**2 * p_sum_w2 - w_space**2 * (1.0 - l1_ratio) ** 2
if np.abs(denom) < 1e-10:
return p_sum_Y2 / (2.0 * l1_ratio * p_sum_Yw)
else:
delta = (l1_ratio * p_sum_Yw) ** 2 - p_sum_Y2 * denom
return (l1_ratio * p_sum_Yw - np.sqrt(delta)) / denom
def norm_epsilon_inf(G, R, phi, l1_ratio, n_orient, w_space=None, w_time=None):
"""Weighted epsilon-inf norm of phi(np.dot(G.T, R)).
Parameters
----------
G : array, shape (n_sensors, n_sources)
Gain matrix a.k.a. lead field.
R : array, shape (n_sensors, n_times)
Residual.
phi : instance of _Phi
The TF operator.
l1_ratio : float between 0 and 1
Parameter controlling the tradeoff between L21 and L1 regularization.
0 corresponds to an absence of temporal regularization, ie MxNE.
n_orient : int
Number of dipoles per location (typically 1 or 3).
w_space : array, shape (n_positions,) or None.
Weights for the L2 term of the epsilon norm. If None, weights are
all equal to 1.
w_time : array, shape (n_positions, n_coefs) or None
Weights for the L1 term of the epsilon norm. If None, weights are
all equal to 1.
Returns
-------
nu : float
The maximum value of the epsilon norms over groups of n_orient dipoles
(consecutive rows of phi(np.dot(G.T, R))).
"""
n_positions = G.shape[1] // n_orient
GTRPhi = np.abs(phi(np.dot(G.T, R)))
# norm over orientations:
GTRPhi = GTRPhi.reshape((n_orient, -1), order="F")
GTRPhi = np.linalg.norm(GTRPhi, axis=0)
GTRPhi = GTRPhi.reshape((n_positions, -1), order="F")
nu = 0.0
for idx in range(n_positions):
GTRPhi_ = GTRPhi[idx]
w_t = w_time[idx] if w_time is not None else None
w_s = w_space[idx] if w_space is not None else 1.0
norm_eps = norm_epsilon(GTRPhi_, l1_ratio, phi, w_space=w_s, w_time=w_t)
if norm_eps > nu:
nu = norm_eps
return nu
def dgap_l21l1(
M,
G,
Z,
active_set,
alpha_space,
alpha_time,